Method Article
在这里,提出了标准化的协议,以评估在卡诺哈布迪蒂斯埃利根的热休克反应(HSR)的诱导使用RT-qPCR在分子水平,荧光报告器在细胞水平,并在有机体水平的光覆盖。
热休克反应 (HSR) 是由细胞细胞细胞蛋白错折叠引起的细胞应激反应,其功能可恢复蛋白质折叠平衡,或蛋白质。卡诺哈布迪蒂斯埃利根斯占据一个独特和强大的利基为HSR研究,因为HSR可以在分子,细胞和有机体水平评估。因此,分子水平的变化可以在细胞水平上可视化,它们对生理学的影响可以在有机体水平上量化。虽然测量 HSR 的检测非常简单,但文献中描述的时间、温度和方法的变化使得比较不同研究的结果变得具有挑战性。此外,这些问题对于任何寻求将HSR分析纳入其研究的人来说,都起到障碍的作用。在这里,通过RT-qPCR、荧光报告器和有机体测光检测,提出了一系列以稳健且可重复的方式测量HSR诱导的协议。此外,我们表明广泛使用的热耐受性测定不依赖于 HSR HSF-1 的成熟主稳压器,因此不应用于 HSR 研究。最后,讨论了文献中发现的这些分析方法的变异,并提出了最佳实践,以帮助标准化整个领域的结果,最终促进神经退行性疾病、衰老和HSR研究。
热休克反应 (HSR) 是由温度升高和其他蛋白质毒性应力引起的细胞细胞因子错折叠引起的一种通用细胞应激反应。在卡诺哈布迪蒂斯埃利根斯启动HSR导致热休克基因的转录上调节,如hsp-70和hsp-16.2。许多热休克蛋白 (HSP) 充当分子伴管,通过与错误折叠或受损的蛋白质直接相互作用来恢复蛋白质折叠平衡或蛋白酶。HSR 的主稳压器是转录因子热冲击因子 1 (HSF-1),其激活通过多个机制1 优雅地控制。
HSF-1 的作用不限于压力。HSF-1是正常生长发育所需的,因为删除hsf-1会导致幼虫逮捕2。HSF-1在衰老和与年龄相关的神经退行性疾病中也很重要,其特征是蛋白质聚集和无法维持蛋白酶。hsf-1 的敲击会导致蛋白质聚合物的积累和寿命的缩短,而hsf-1 的过度表达会减少蛋白质聚合并延长寿命 3,,4。因此,在分子水平上调节HSF-1对机体生理和疾病有着广泛的影响。
C. elegans是 HSR 研究的强大模型生物体,因为 HSR 可以在分子、细胞和有机体级别4、5、6,5,进行测量。强调该模型的力量,在描述HSR路径的关键进展,如组织特定的差异,在HSR调控,已发现在C.elegans7,8,8。此外,C. elegans被广泛用于衰老研究,是一种新兴的系统,用于建模与蛋白细胞减少的疾病相关的疾病。
虽然使用C. elegans 的热休克实验可以快速且可重复,但在开始之前需要考虑几个问题。例如,应使用哪种温度来感应 HSR,以及蠕虫应暴露多长时间?用干培养箱还是水浴更好?应该使用哪个发展阶段?不幸的是,用于研究 HSR 的方法因实验室而异,在选择最佳方法时造成混乱,并难以在实地比较结果。
我们提出了使用RT-qPCR、荧光报告器和测量HSR的稳健和标准化协议。虽然这三种方法是相辅相成的,但它们各有优缺点。例如,RT-qPCR 是 HSR 最直接、最定量的测量方法,这种测定方法可以很容易地扩展,包括许多不同的热冲击基因。然而,RT-qPCR是最昂贵的,可能在技术上是困难的,并要求使用专门的设备。相比之下,荧光测量器具有测量HSR诱导中组织特异性差异的优点。然而,它们难以精确量化,只能测量感应超过一定阈值,并且需要使用荧光显微镜。此外,与标准N2菌株相比,此处描述的记者菌株在发育上延迟。虽然含有单拷贝转基因的较新的报告器菌株可用,但9日尚未在这里进行测试。第三种检测方法,即,具有在有机体水平上提供生理相关读出的优势。然而,这种分析可以说是最不敏感和最间接的。最后,我们讨论了这些分析中发现的一些常见变异,并提出了一套最佳做法,以促进该领域的研究。
1. C. elegans 的维护和同步
2. HSR记者的荧光成像
3. 使用RT-qPCR测量HSR基因表达
4. 在有机体一级测量HSR的特高覆盖测定
使用本手稿中描述的方案,使用荧光报告器、RT-qPCR 和封面检测测量 HSR 感应。在每种情况下,第1.2节中的程序都被用来生成尚未达到生殖成熟度的同步的年轻成年蠕虫。
为了在细胞水平上可视化HSR诱导,根据协议第2节分析了M446(hsp-70p:::::gfp)和CL2070(hsp-16.2p::gfp)荧光报告器菌株。hsp-16.2p::gfp在没有热冲击的阴性对照样本中,hsp-16.2报告员只表现出正常的自动荧光,而hsp-70报告员在肛门减压肌中具有组成荧光,如先前报道的4(图1A)。在33°C下1小时热冲击后,在两名记者中观察到强荧光;但是,表达式模式因使用哪个报告器而与众不同(图 1B)。hsp-70记者在肠道和精子中最亮,而hsp-16.2记者在咽中最亮。此外,hsp-16.2记者的诱导量具有很高的蠕虫变异性,但hsp-70记者没有13。
第 2 节的常用变体是执行干式培养箱而不是循环水浴中的热冲击。因此,还测试了这两种方法的区别。结果发现,这两种协议都使用我们的条件对两个荧光报告器进行了强健的感应,尽管建议将循环水浴作为最佳做法(参见讨论)(图1B)。
为了测试记者对转录因子HSF-1的依赖性,在测量记者诱导之前,使用喂料RNAi来击倒hsf-1。研究发现,在HSF-1击倒时,两种菌株的荧光严重降低,表明这些记者是HSF-1依赖文献4(图2)所述。然而,也观察到,咽荧光在hsf-1击倒后,在两个记者中持续存在,这与先前的报道一致,即咽部肌肉通过喂养14对RNAi具有抗药性。
为了在分子水平上量化HSR的整个蠕虫诱导,使用协议第3节使用RT-qPCR测量了两个内源性HSP。以三钙为单位测量样品,为每个底向器生成标准曲线,并分析每个样品的熔体曲线进行质量控制。研究发现,33°C热冲击1小时导致两个热休克基因,hsp-70和hsp-16.2的相对表达增加2,000多倍(hsp-16.2图3)。这些结果表明,这两个内源基因都适合测量HSR诱导,33°C热冲击1小时足以产生实质性反应。但是,在解释热冲击诱导的绝对程度时应谨慎,因为没有热冲击的 mRNA 水平非常低。
为了分析对热冲击的生理反应,使用协议第4节对有机体性热吸收测定进行了测试。研究发现,蠕虫在33°C下暴露在6小时热冲击下,在48小时恢复后,蠕虫的正常运动减少了20%(图4A)。这种测定对HSF-1转录因子的依赖性测试使用喂养RNAi敲打hsf-1,然后再使蠕虫暴露在压力之下。研究发现,hsf-1的击倒导致正常运动急剧下降,>95% 的蠕虫在用铂金线挑后表现出抖动或瘫痪。
我们比较了这种替代性有机体测定法,通常称为热耐症。在热耐死度测定中,使用干培养箱将蠕虫暴露在连续 35°C 的温度下,并在不同时间点测量活虫的百分比。使用这种测定方法,发现连续暴露在35°C的蠕虫在大约8小时暴露后死亡(图4B)。然而,当使用RNAi击倒测试这种测定对HSF-1的依赖性时,发现对hsf-1的抑制不会导致热耐受性降低。以前使用 HSF-1 突变显示的类似结果(请参阅讨论)。因此,不建议使用热耐症测定来测量HSR,并且在有机体一级检查HSR是首选的方法。
图1:用荧光测量器测量HSR感应。(A) hsp-70p的基底和(B)热致用表达::gfp和hsp-16.2p::gfp在水浴或孵化器中,在33°C下热冲击1小时后应变。蠕虫在OP50细菌上被提出64小时,热震惊,然后在20°C恢复8小时成像前。供参考,在 (A) 中无热震蠕虫在 (B) 中重新规范化,以匹配热冲击蠕虫的范围和饱和度。显示了两个实验复制的代表性图像。比例线 = 250 μm. 请单击此处查看此图的较大版本。
图2:用荧光测量器测量的HSR感应取决于HSF-1。含有hsp-70p 的应变::gfp 和 hsp-16.2p::gfp 记者在控制(L4440空矢量)或hsf-1 RNAi 板上提出 64 小时,在水浴中 33 °C 下暴露在 1 小时热冲击下,然后在 20 °C 下恢复 8 小时。显示了两个实验复制的代表性图像。比例线 = 250 μm. 请单击此处查看此图的较大版本。
图3:使用RT-qPCR测量的HSR感应。N2蠕虫在HT115细菌上繁殖60小时,然后在33°C水浴中加热1小时。hsp-70 (C12C8.1) 和 hsp-16.2的相对 mRNA 水平显示为无热冲击控制。绘制的值是四个生物复制的平均值,误差条表示 = SEM。 统计显著性是使用未配对的学生 t 检验计算的。**p < 0.01.请单击此处查看此图的较大版本。
图4:热覆盖,但不是热度,取决于HSF-1。N2 蠕虫在控制 (L4440) 或hsf-1 RNAi 板上提出 60 h,然后转移到:(A) A 33°C 水浴 6 小时,在 20°C 下恢复 48 小时,然后为正常运动(热覆盖)或(B) A 35 °C 干培养箱打分,每 2 小时取出一次,直到死亡(嗜热)。每次检测在2个独立日内与n= 30人一起完成。显示平均值。请单击此处查看此图的较大版本。
在文献中,各种温度、时间和设备都被用来测定HSR,这引入了不必要的警告,并导致实验室之间难以比较结果。例如,温度范围从32-37 °C和时间从15分钟到几个小时已被用来诱导HSR15。然而,据报道,致死性发生在3小时37°C的所有阶段和1.5小时第1天成人15。此外,我们表明,蠕虫暴露在 35°C 中会导致非 HSF-1 依赖的致命性,使这些条件不适合 HSR 分析。相比之下,33°C的热冲击为1小时,其强健性足以引起热休克基因的强烈诱导,但足够温和,不会影响蠕虫的生存能力。事实上,暴露在33°C中的时间只有6小时,只会导致20%的蠕虫表现出异常运动。因此,我们建议使用温度为33°C和1小时的时间作为RT-qPCR和荧光报告器测定的标准化条件。
最近的实验表明,HSR实验蠕虫的发育阶段尤为重要。最近发现,在C.elegans,当母体开始产卵5时,HSR的可采性下降(即坍塌)下降50%。正确分期蠕虫至关重要,因为携带突变的菌株的发育时间往往存在差异。如果使用温度敏感的突变体,这也会影响结果,如果他们不同步他们的生殖年龄。因此,建议仔细测量每个菌株的产卵开始,以确定何时发生崩溃。L4摩尔特之后和生殖成熟开始前的时间窗口很窄;因此,必须小心,使 HSR 崩溃不会无意中导致结果的变异。
除了发育时间,温度的异常小变化,只要1°C,可以对HSR产生实质性影响。例如,C. elegans 中的热传感器神经元对温度变化敏感,小至 ±0.05 °C16。因此,必须使用能够准确测量温度的温度计。因此,我们建议使用校准设备进行温度测量,这种测量精度足以测量 ±0.1 °C 内的温度。此外,应使用具有数据记录功能的温度计测量不同时间的温度变化。许多孵化器被指定在孵化器的不同部分和跨时间具有超过 1 °C 的热变化,这对 HSR 实验有显著的影响。作为最佳实践,我们建议使用具有足够绝缘和循环的培养箱,以尽量减少温度波动。对于进行热冲击实验,我们提出了循环水浴的最佳实践。在水浴中,阿加板达到所需温度大约需要6-7分钟,但在干式培养箱15,17中则要长得多。但是,如果没有循环水浴,我们已表明,使用我们的条件,在干式培养箱中也会出现坚固的 HSR 感应。如果使用干式孵化器,应在压力期间打开孵化器。
热冲击基因的诱导依赖于HSR,HSF-1的主调节器。在这里,我们提出证据表明,另外两个间接的测定,荧光记者和证据,也依赖于HSF-1。值得注意的是,我们发现,一种常用的替代有机体测定,热耐受性,不是使用hsf-1 RNAi的HSF-1依赖型(图4)。类似的结果以前也报告过使用hsf-1突变体或ttx-3突变体,它阻止HSR18,19,20。,19,20这些结果表明,热耐症测定不应用于HSR研究。此外,这表明最佳做法是测试用于测量 HSR 的任何检测的 HSF-1 依赖性。
总之,我们提出了一系列标准化协议和最佳实践,用于在C.elegans中对HSR感应进行可靠和可重复的测量。我们希望这些方法将减少HSR实验中的变异性,提高可重复性。促进实验室间HSR研究的直接比较将有助于加速HSR领域的研究。此外,标准化将有利于对与HSR密切相关的衰老和神经退行性疾病的研究。
作者没有什么可透露的。
这项工作得到了弗兰克·莱斯利的捐赠的支持。部分菌株由CGC提供,该委员会由NIH研究基础设施计划办公室(P40 OD010440)资助。
Name | Company | Catalog Number | Comments |
18S-forward primer | TTGCGTCAACTGTGGTCGTG | ||
18S-reverse primer | CCAACAAAAAGAACCGAAGT CCTG | ||
AM446 rmIs223[phsp70::gfp; pRF4(rol-6(su1006))] | Morimoto lab | http://groups.molbiosci.northwestern.edu/morimoto/ | |
C12C8.1-forward primer | GTACTACGTACTCATGTGTCG GTATTT | ||
C12C8.1-reverse primer | ACGGGCTTTCCTTGTTTTCC | ||
CFX Connect Real-Time PCR Detection System | Bio Rad | 1855200 | |
CL2070 dvIs70 [hsp-16.2p::GFP + rol-6(su1006)] | Caenorhabditis Genetics Center (CGC) | https://cgc.umn.edu/ | |
EasyLog Thermistor Probe Data Logger with LCD | Lascar | EL-USB-TP-LCD | |
Greenough Stereo Microscope S9i Series | Leica | ||
Hard Shell 96 Well PCR Plates | Bio Rad | HSS9601 | |
hsp-16.2-forward primer | ACTTTACCACTATTTCCGTCC AGC | ||
hsp-16.2-reverse primer | CCTTGAACCGCTTCTTTCTTTG | ||
iScript cDNA Synthesis Kit | Bio Rad | 1708891 | |
iTaq Universal Sybr Green Super Mix | Bio Rad | 1725121 | |
Laser Scanning Confocal Microscope | Nikon | Eclipse 90i | |
MultiGene OptiMax Thermo Cycler | Labnet | TC9610 | |
N2 (WT) | Caenorhabditis Genetics Center (CGC) | https://cgc.umn.edu/ | |
Nanodrop Lite Spectrophotometer | Thermo Scientific | ND-LITE | |
Parafilm M Roll | Bemis | 5259-04LC | |
RapidOut DNA Removal Kit | Thermo Scientific | K2981 | |
Recirculating Heated Water Bath | Lauda Brinkmann | RE-206 | |
Traceable Platinum Ultra-Accurate Digital Thermometer | Fisher Scientific | 15-081-103 | |
TRIzol Reagent | Invitrogen | 15596026 | RNA isolation reagent |
TurboMix Attachment | Scientific Industries | SI-0564 | |
Vortex-Genie 2 | Scientific Industries | SI-0236 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。