登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文描述了一个快速协议去纳切除术和采样血液从小远程鱼,使用日本美达卡(Oryzias拉蒂普斯)作为模型,以调查性类固醇在动物生理中的作用。

摘要

性类固醇,由腺体产生,在大脑和垂体组织可塑性和神经内分泌控制所有脊椎动物通过提供大脑和垂体的反馈发挥关键作用。与哺乳动物相比,Teleost鱼在组织可塑性和生殖策略变化方面具有较高的水平,似乎是研究性类固醇的作用及其作用机制的有用模型。去除性类固醇生产的主要来源使用腺切除术与血液采样测量类固醇水平已经建立和相当可行的大鱼, 是一个强大的技术来调查性类固醇的作用和影响.但是,当在小型远程模型中实施时,这些技术会带来挑战。在这里,我们描述了日本母体的妇腺切除术的分步程序,然后是血液采样。这些协议被证明是非常可行的美达卡表明高存活率, 安全的寿命和表型的鱼, 并在性别类固醇清除方面可重复性.使用这些程序结合使用这种小远程模型的其他优势将大大提高对脊椎动物中性类固醇提供的生殖神经内分泌控制和组织可塑性的反馈机制的理解。

引言

在脊椎动物中,性类固醇,主要是由性腺动物产生的,通过各种反馈机制1,2,3,4,5在大脑-脑-脑-淋巴(BPG)轴的调节中起着重要的作用。此外,性类固醇影响大脑6,7,8和内分泌细胞,包括脑垂体9,10神经元的增殖和活动,从而在大脑和垂体可塑性的关键作用。 尽管在哺乳动物方面知识相对较好,但由性类固醇调停的BPG轴调节机制在非哺乳动物物种中还远远不为人所知,导致对进化保护原则的理解不充分。仍然有数量有限的研究记录性类固醇在大脑和垂体可塑性的作用, 从而提出了进一步研究性类固醇对各种脊椎动物物种的作用和影响的需要.

在脊椎动物中,远程运动已成为解决许多生物和生理问题的有力示范动物,包括应激反应12、13、生长14、15、营养生理16、17和繁殖2。Teleosts, 其中性别类固醇主要代表雌二 (E2) 和 11- 酮睾酮 (11-KT) 在男性18,19,长期以来一直是可靠的实验模型, 以调查跨物种繁殖的一般原理.Teleosts在下丘脑脑垂体连接20、21和独特的角细胞22中表现出独特性,这有时便于解释调节机制。此外,由于远程实验既适应实验室实验又进行实地实验,因此与其他生物体相比,远程运动具有许多优势。他们相对便宜购买和维持23,24。特别是小型远程模型,如斑马鱼(Danio rerio)和日本美达卡(Oryzias latipes),是具有非常高的活性,生命周期相对较短的物种,能够快速分析基因功能和疾病机制23,从而提供了更大的优势,解决大量的生物和生理问题,考虑到许多发达的协议和遗传工具包可用于这些物种25。

在许多研究中,去除淋巴(淋巴切除术)以及血液采样技术已被用作研究许多生理问题的方法,包括它对26、27、28、鸟类29和两栖动物30种哺乳动物的脊椎动物生殖生理学的影响。虽然腺切除术对生殖生理的影响可以替代模仿性类固醇拮抗剂,如塔莫西芬和氯米芬,药物的作用似乎是不一致的,由于双模效应31,32。长期接触性类固醇拮抗剂可能导致卵巢扩大33,34,这可能会禁用观察其影响的长期目的, 由于不健康的表型.此外, 不可能进行性类固醇拮抗剂治疗后的恢复实验, 以保证某些性类固醇的具体效果.与上述点, 性类固醇对抗剂使用的其他权衡已广泛审查31,32.因此, 结核切除术今天仍然作为一个强大的技术来研究性类固醇的作用.

虽然去角切除术和血液采样技术在更大的物种中相对容易执行, 如欧洲海贝(迪森特拉丘斯拉布拉克斯)35,蓝头瓦塞(塔拉索马双发)36,狗鱼(西利奥尔希努斯犬)37和猫鱼(异种化石克拉里亚斯浴场)38,39,他们提出了挑战时,应用在小鱼作为梅达卡。例如,使用鱼麻醉输送系统(FADS)40不太可行,而且似乎容易对小鱼造成过度的身体伤害。此外,通常用于大鱼40的腺切除术不适合需要高精度以避免过度伤害的小鱼。最后,由于获得血管的机会有限,而且这些动物的血液量很小,血液采样具有挑战性。因此,在小手术中展示造血术和血液采样的每一步的明确协议非常重要。

该协议演示了腺切除术的分步程序,随后在日本产自东亚的小淡水鱼——日本美中进行血液取样。日本的美田有一个测序的基因组,几个分子和遗传工具可用25,和一个基因性别测定系统,允许调查性差异之前,二次性特征或性腺发育良好41。有趣的是,日本美达卡拥有融合的果子虫,这与许多其他的远程物种42相反。这两种技术加起来总共只需要8分钟,将完成该物种已经存在的视频协议列表,其中包括血管标签43,垂体部分44 和脑神经元45的补丁夹,和原细胞培养46。这些技术将使研究社区调查和更好地了解性类固醇在反馈机制中的作用,以及大脑和垂体可塑性在未来。

研究方案

所有实验和动物处理都是根据挪威生命科学大学关于实验动物福利的建议进行的。挪威食品安全局(FOTS ID 24305)批准了使用淋病切除术的实验。

注:实验采用成年男性和女性(6-7个月大,体重约0.35克,长度约2.7厘米)日本美的进行。性别是通过区分次要性特征,如背鳍和肛鳍的大小和形状,如42,47描述确定。

1. 仪器和解决方案准备

  1. 准备麻醉库存溶液(0.6% 三卡因)。
    1. 稀释 0.6 克三甲酸酯 (MS-222) 在 100 mL 的 10 倍磷酸盐缓冲盐水 (PBS).
    2. 将 1 mL 的 Tricaine 库存溶液分发到多个 1.5 mL 塑料管中,并储存在 -20 °C 下,直至使用。
  2. 将 18 克 NaCl 加入 2 升水族馆水中,准备回收水(0.9% NaCl 溶液)。将溶液存放在室温下,直到使用。
  3. 通过对角线打破剃须刀来准备切口工具,以获得一个锐点(图1A)。
  4. 通过将 25 μL 肝素钠稀释到 1x PBS 的 500 μL 中,准备血液抗凝血溶液(0.05 U/μL 肝素钠)。将抗凝血液存储在 4 °C 下,直到使用。
  5. 根据制造商的指示,用拔针器(图1B)拉玻璃毛细圈,从90毫米长的玻璃毛细圈中准备两根玻璃针。
    注:玻璃针的外径为1毫米,内径为0.6毫米。
  6. 通过切割盖子来准备一个1.5mL塑料管盖,并制作一个与针外径相符的孔(图1C)。要打孔,加热 9 毫米玻璃毛细孔的一端,并通过盖子刺穿加热的玻璃毛细圈。或者,使用针刺穿盖子,直到孔的直径与 9 毫米玻璃毛细孔相符。

2. 妇科切除术

  1. 在30mL的水族馆水中稀释一管三甲酸酯(0.6%),准备0.02%的麻醉液。
  2. 准备解剖工具,包括一个超细和两个细钳(一个有相对宽的尖端),小剪刀,尼龙线和剃须刀,如第1.3步所述。
  3. 将鱼放入 0.02% 麻醉液中 30-60 秒,使鱼麻醉。
    注:麻醉的持续时间取决于鱼的大小和重量,必须加以调整。为了确保鱼完全麻醉,鱼体可以用钳子轻轻捏捏。如果鱼没有反应,就可以开始做腺切除术。
  4. 从麻醉液中取出鱼,将鱼水平放在其一侧,在解剖显微镜下出水。
  5. 女性卵巢切除术 (OVX)
    1. 取出卵卵(挂在女性身体外的卵子),如果有的话,刮切口区域的鳞片(图2A)。
    2. 使用剃须刀刀片,在肋骨之间、骨盆和鼻鳍之间轻轻切口约2-2.5毫米长(图2A)。然后,轻轻捏鱼腹部,同时用宽尖的细钳一点一点地取出卵巢。
    3. 使用细钳切开卵巢末端,将卵巢放在一边(图2B)。
      注意:如果可能,请注意不要折断卵巢囊。如果卵巢囊破裂,尽可能完全去除任何腺体痕迹,而不留下任何未排卵的卵子。
  6. 男性兰花切除术
    1. 轻轻地在肛门上方的肋骨之间切开(图2A),然后用细钳慢慢打开切口。
    2. 用细钳轻轻抓住睾试,慢慢取出睾试。之后,切开睾片的末端,以完全去除睾测试(图2B)。对于男性兰花切除术,所有制剂都类似于女性,直到切口部分。抓睾考试时,有时会获得类似于睾子的脂肪。然而,在恢复脂肪后,可以尝试再次找到睾试(图2B)。
      注:对于男性和女性来说,重要的是尽量减少腹部的切口大小,以防止可能导致死亡的过度损伤。有时肠道也可能通过切口和淋头出现,因此请确保在关闭前将它们正确返回切口内。先前对卵巢和睾睾门在梅达卡腹部的位置的了解是必不可少的。
  7. 缝合切口同样在男性和女性(图3)。
    1. 将尼龙线放在切口区旁边,用超细钳子将切口右侧的皮肤刺入内侧腔内,用细钳将线带入(3:1-2)。
    2. 通过外体腔从切口左侧刺出皮肤以取出线(3:3-4)。
    3. 关闭切口开口,打两个结,切开过多的线(3:4-6)。
      注:缝合线必须足够紧,鱼的剩余线必须足够长,以防止缝合线松动。从麻醉到缝注的整个过程通常需要长达6分钟。更长的时间可能导致死亡。
    4. 将鱼放入回收水中,并放置至少24小时,然后再将其转移到水族馆系统。
      注:果纳切除鱼类通常在回收水中1-2小时后表现出正常行为。因此,根据实验目的,一个人可以在这个时间间隔后对鱼进行采样。

3. 血液采样程序

  1. 准备工具:玻璃针、硅胶毛细管、带孔的塑料管、空的1.5毫升塑料管、迷你中心和胶带。
  2. 使用第 2.1 步中描述的 0.02% 麻醉液对鱼进行麻醉,并将鱼置于垂直位置的解剖显微镜下(图 4A)。将鱼放在明亮的表面上,以方便眼花孔穿刺静脉的可视化。
  3. 将玻璃针连接到硅胶毛细血管上(图4B),安装抽屉。用宽尖钳子打破针尖,通过吸气和吹动将针头内部涂上抗凝固液。
    注意:建议使用吸盘和长度至少为 50 厘米的硅胶毛细血管,以采取安全措施,避免吸吸时直接接触血液。此外,确保针尖的开口足够大,以便抽取血液。
  4. 将针头引向鱼的斑点区域,瞄准静脉(图5A),用嘴抽血,直到至少四分之一的针头总体积被填充(图5B)。
    注意:在从鱼体中取出针头之前,必须停止吸气。
  5. 松开针头,在针尖侧附近放一块胶带。将盖子与一个孔放在收集管上,将针头放在管内,通过孔,针尖放在外侧(图5C)。
  6. 将鱼放入回收水中,并放置至少24小时,然后再将其转移到水族馆系统。
    注:要从同一条鱼进行第二次血液取样,请在第一次血液采样一周后对血液进行取样。
  7. 闪光旋转收集的血液1-2秒,在室温下1000克收集管内的血液。
  8. 直接进入下游应用或将血液储存在 -20 °C 下,直到使用。
    注: 参考以前的研究性类固醇提取从整个血液48.

结果

该协议描述了在小尺寸模型远程手术(日本医疗)中执行腺切除术和血液采样的每一步。雌性卵巢切除术(OVX)后鱼类的存活率为100%(10条鱼类中的10条),而94%(18条鱼类中的17条)的雄性在兰花切除术后存活下来。同时,在进行血液采样手术后,所有(38条鱼)都幸存了下来。

沙姆操作的雌性显示卵子(图6A?...

讨论

如以往文献所报道,在其他模型物种中,长期以来一直使用造血术和血液采样来调查与性别类固醇在BPG轴调节中的作用有关的问题。然而,这些技术似乎只适合更大的动物。考虑到常用的远程模型(日本美田)体积小,我们为该物种的去结肠切除术和血液采样提供了详细的协议。

果子切除术鱼类的成活率达到近100%,表明在麦田上应用果子切除术是可行的。同样,血液采样过?...

披露声明

作者没有什么可透露的。

致谢

作者感谢卢尔德·卡伦·谭女士在养鱼方面给予的帮助。这项工作由NMBU、日本科学促进会(JSPS)的助学金(赠款编号18H04881和18K19323)资助,并资助住友基金会至S.K.的基础科学研究项目。

材料

NameCompanyCatalog NumberComments
Glass capilaryGD1Glass Capillary with Filament GD-1; Narishige
Heparin sodium saltH4784-1GSigma-aldrich
Needle pullerP97Flaming/Brown Micropipette puller Model P-97; Sutter Instrument
Nylon threadN45VLPolyamide suture, 0.2 metric; Crownjun
Plastic tubeT9661Eppendorf Safe-lock microcentifuge tube 1.5 ml, Sigma-aldrich
Razor blade-Astra Superior Platinum Double Edge Razor Blades Green, salonwholesale.com
Silicone capillarya16090800ux0403Uxcell Silicone Tube 1 mm ID x 2 mm OD, amazon.com 
TricaineWXBC9102VAldrich chemistry

参考文献

  1. Weltzien, F. -. A., Andersson, E., Andersen, &. #. 2. 1. 6. ;., Shalchian-Tabrizi, K., Norberg, B. The brain-pituitary-gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 137 (3), 447-477 (2004).
  2. Yaron, Z., Levavi-Sivan, B., Farrell, A. P. . Encyclopedia of Fish Physiology. 2, 1500-1508 (2011).
  3. Goldman, B. D. The circadian timing system and reproduction in mammals. Steroids. 64 (9), 679-685 (1999).
  4. Taranger, G. L., et al. Control of puberty in farmed fish. General and Comparative Endocrinology. 165 (3), 483-515 (2010).
  5. Messinis, I. E. Ovarian feedback, mechanism of action and possible clinical implications. Human Reproduction Update. 12 (5), 557-571 (2006).
  6. Diotel, N., et al. The brain of teleost fish, a source, and a target of sexual steroids. Frontiers in Neuroscience. 5, 137 (2011).
  7. Diotel, N., et al. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Frontiers in Neuroscience. 12, 84 (2018).
  8. Larson, T. A. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair. Frontiers in Endocrinology. 9, 205 (2018).
  9. Fontaine, R., et al. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. General and Comparative Endocrinology. 287, 113344 (2020).
  10. Fontaine, R., Royan, M. R., von Krogh, K., Weltzien, F. -. A., Baker, D. M. Direct and indirect effects of sex steroids on gonadotrope cell plasticity in the teleost fish pituitary. Frontiers in Endocrinology. , (2020).
  11. Kanda, S. Evolution of the regulatory mechanisms for the hypothalamic-pituitary-gonadal axis in vertebrates-hypothesis from a comparative view. General and Comparative Endocrinology. 284, 113075 (2019).
  12. Schreck, C. B. Stress and fish reproduction: The roles of allostasis and hormesis. General and Comparative Endocrinology. 165 (3), 549-556 (2010).
  13. Wendelaar Bonga, S. E. The stress response in fish. Physiological Reviews. 77 (3), 591-625 (1997).
  14. Mommsen, T. P. Paradigms of growth in fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 129 (2), 207-219 (2001).
  15. Won, E., Borski, R. Endocrine Regulation of Compensatory Growth in Fish. Front. Endocrinol. 4, 74 (2013).
  16. MacKenzie, D. S., VanPutte, C. M., Leiner, K. A. Nutrient regulation of endocrine function in fish. Aquaculture. 161 (1), 3-25 (1998).
  17. Rønnestad, I., Thorsen, A., Finn, R. N. Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture. 177 (1), 201-216 (1999).
  18. Borg, B. Androgens in teleost fishes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 109 (3), 219-245 (1994).
  19. Rege, J., et al. Circulating 11-oxygenated androgens across species. The Journal of Steroid Biochemistry and Molecular Biology. 190, 242-249 (2019).
  20. Blázquez, M., Bosma, P. T., Fraser, E. J., Van Look, K. J. W., Trudeau, V. L. Fish as models for the neuroendocrine regulation of reproduction and growth. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 119 (3), 345-364 (1998).
  21. Zambrano, D. Innervation of the teleost pituitary. General and Comparative Endocrinology. 3, 22-31 (1972).
  22. Weltzien, F. -. A., Hildahl, J., Hodne, K., Okubo, K., Haug, T. M. Embryonic development of gonadotrope cells and gonadotropic hormones - Lessons from model fish. Molecular and Cellular Endocrinology. 385 (1), 18-27 (2014).
  23. Harris, M. P., Henke, K., Hawkins, M. B., Witten, P. E. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. Journal of applied ichthyology. 30 (4), 616-629 (2014).
  24. Powers, D. Fish as model systems. Science. 246 (4928), 352-358 (1989).
  25. Naruse, K., Naruse, K., Tanaka, M., Takeda, H. . Medaka: A Model for Organogenesis, Human Disease, and Evolution. , 19-37 (2011).
  26. Green, P. G., et al. Sex Steroid Regulation of the Inflammatory Response: Sympathoadrenal Dependence in the Female Rat. The Journal of Neuroscience. 19 (10), 4082-4089 (1999).
  27. Pakarinen, P., Huhtaniemi, I. Gonadal and sex steroid feedback regulation of gonadotrophin mRNA levels and secretion in neonatal male and female rats. Journal of Molecular Endocrinology. 3 (2), 139 (1989).
  28. Purves-Tyson, T. D., et al. Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra. BMC Neuroscience. 13 (1), 95 (2012).
  29. Adkins-Regan, E., Ascenzi, M. Sexual differentiation of behavior in the zebra finch: Effect of early gonadectomy or androgen treatment. Hormones and Behavior. 24 (1), 114-127 (1990).
  30. McCreery, B. R., Licht, P. Effects of gonadectomy and sex steroids on pituitary gonadotrophin release and response to gonadotrophin-releasing hormone (GnRH) agonist in the bullfrog, Rana catesbeiana. General and Comparative Endocrinology. 54 (2), 283-296 (1984).
  31. Clark, J. H., Markaverich, B. M. The agonistic-antagonistic properties of clomiphene: a review. Pharmacology & Therapeutics. 15 (3), 467-519 (1981).
  32. Mourits, M. J. E., et al. Tamoxifen treatment and gynecologic side effects: a review. Obstetrics & Gynecology. 97 (5), 855-866 (2001).
  33. Wallach, E., Huppert, L. C. Induction of Ovulation with Clomiphene Citrate. Fertility and Sterility. 31 (1), 1-8 (1979).
  34. Moradi, B., Kazemi, M. A., Rahamni, M., Gity, M. Ovarian hyperstimulation syndrome followed by ovarian torsion in premenopausal patient using adjuvant tamoxifen treatment for breast cancer. Asian Pacific Journal of Reproduction. 5 (5), 442-444 (2016).
  35. Alvarado, M. V., et al. Actions of sex steroids on kisspeptin expression and other reproduction-related genes in the brain of the teleost fish European sea bass. The Journal of Experimental Biology. 219 (21), 3353-3365 (2016).
  36. Godwin, J., Crews, D., Warner, R. R. Behavioural sex change in the absence of gonads in a coral reef fish. Proceedings of the Royal Society of London. Series B: Biological Sciences. 263 (1377), 1683-1688 (1996).
  37. Jenkins, N., Dodd, J. M. Effects of ovariectomy of the dogfish Scyliorhinus canicula L. on circulating levels of androgen and oestradiol and on pituitary gonadotrophin content. Journal of Fish Biology. 21 (3), 297-303 (1982).
  38. Manickam, P., Joy, K. P. Changes in hypothalamic catecholamine levels in relation to season, ovariectomy and 17β-estradiol replacement in the catfish, Clarias batrachus (L.). General and Comparative Endocrinology. 80 (2), 167-174 (1990).
  39. Senthilkumaran, B., Joy, K. P. Effects of ovariectomy and oestradiol replacement on hypothalamic serotonergic and monoamine oxidase activity in the catfish, Heteropneustes fossilis: a study correlating plasma oestradiol and gonadotrophin levels. Journal of Endocrinology. 142 (2), 193-203 (1994).
  40. Sladky, K. K., Clarke, E. O. Fish Surgery: Presurgical Preparation and Common Surgical Procedures. Veterinary Clinics of North America: Exotic Animal Practice. 19 (1), 55-76 (2016).
  41. Hori, H., Naruse, K., Tanaka, M., Takeda, H. . Medaka: A Model for Organogenesis, Human Disease, and Evolution. , 1-16 (2011).
  42. Murata, K., Kinoshita, M., Naruse, K., Tanaka, M., Kamei, Y., Murata, K., et al. . Medaka: Biology, Management, and Experimental Protocols. 2, 49-95 (2019).
  43. Fontaine, R., Weltzien, F. -. A. Labeling of Blood Vessels in the Teleost Brain and Pituitary Using Cardiac Perfusion with a DiI-fixative. Journal of Visualized Experiments. (148), e59768 (2019).
  44. Fontaine, R., Hodne, K., Weltzien, F. -. A. Healthy Brain-pituitary Slices for Electrophysiological Investigations of Pituitary Cells in Teleost Fish. Journal of Visualized Experiments. (138), e57790 (2018).
  45. Zhao, Y., Wayne, N. L. Recording Electrical Activity from Identified Neurons in the Intact Brain of Transgenic Fish. Journal of Visualized Experiments. (74), e50312 (2013).
  46. Ager-Wick, E., et al. Preparation of a High-quality Primary Cell Culture from Fish Pituitaries. Journal of Visualized Experiments. (138), e58159 (2018).
  47. Wittbrodt, J., Shima, A., Schartl, M. Medaka - model organism from the far east. Nature Reviews Genetics. 3 (1), 53-64 (2002).
  48. Kayo, D., Oka, Y., Kanda, S. Examination of methods for manipulating serum 17β-Estradiol (E2) levels by analysis of blood E2 concentration in medaka (Oryzias latipes). General and Comparative Endocrinology. 285, 113272 (2020).
  49. Eames, S. C., Philipson, L. H., Prince, V. E., Kinkel, M. D. Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish. 7 (2), 205-213 (2010).
  50. Velasco-Santamaría, Y. M., Korsgaard, B., Madsen, S. S., Bjerregaard, P. Bezafibrate, a lipid-lowering pharmaceutical, as a potential endocrine disruptor in male zebrafish (Danio rerio). Aquatic Toxicology. 105 (1-2), 107-118 (2011).
  51. Jagadeeswaran, P., Sheehan, J. P., Craig, F. E., Troyer, D. Identification and characterization of zebrafish thrombocytes. British Journal of Haematology. 107 (4), 731-738 (1999).
  52. Zang, L., Shimada, Y., Nishimura, Y., Tanaka, T., Nishimura, N. Repeated Blood Collection for Blood Tests in Adult Zebrafish. Journal of Visualized Experiments. (102), e53272 (2015).
  53. Taves, M. D., et al. Steroid concentrations in plasma, whole blood and brain: effects of saline perfusion to remove blood contamination from brain. PloS one. 5 (12), 15727 (2010).
  54. Holtkamp, H. C., Verhoef, N. J., Leijnse, B. The difference between the glucose concentrations in plasma and whole blood. Clinica Chimica Acta. 59 (1), 41-49 (1975).
  55. Kanda, S., et al. Identification of KiSS-1 Product Kisspeptin and Steroid-Sensitive Sexually Dimorphic Kisspeptin Neurons in Medaka (Oryzias latipes). Endocrinology. 149 (5), 2467-2476 (2008).
  56. Kanda, S., Karigo, T., Oka, Y. Steroid Sensitive kiss2 Neurones in the Goldfish: Evolutionary Insights into the Duplicate Kisspeptin Gene-Expressing Neurones. Journal of Neuroendocrinology. 24 (6), 897-906 (2012).
  57. Mitani, Y., Kanda, S., Akazome, Y., Zempo, B., Oka, Y. Hypothalamic Kiss1 but Not Kiss2 Neurons Are Involved in Estrogen Feedback in Medaka (Oryzias latipes). Endocrinology. 151 (4), 1751-1759 (2010).
  58. Kayo, D., Zempo, B., Tomihara, S., Oka, Y., Kanda, S. Gene knockout analysis reveals essentiality of estrogen receptor β1 (Esr2a) for female reproduction in medaka. Scientific Reports. 9 (1), 8868 (2019).
  59. Fontaine, R., Ager-Wick, E., Hodne, K., Weltzien, F. -. A. Plasticity in medaka gonadotropes via cell proliferation and phenotypic conversion. Journal of Endocrinology. 245 (1), 21 (2020).
  60. Fontaine, R., Ager-Wick, E., Hodne, K., Weltzien, F. -. A. Plasticity of Lh cells caused by cell proliferation and recruitment of existing cells. Journal of Endocrinology. 240 (2), 361 (2019).
  61. Hasebe, M., Kanda, S., Oka, Y. Female-Specific Glucose Sensitivity of GnRH1 Neurons Leads to Sexually Dimorphic Inhibition of Reproduction in Medaka. Endocrinology. 157 (11), 4318-4329 (2016).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

166 11

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。