JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,提出了一种从各种哺乳动物(小鼠,大鼠,兔子,猪和牛)中分离和转染原代虹膜和视网膜色素上皮细胞的方案。该方法非常适合在各种设置中研究眼部基因治疗方法,以进行离体分析和可转移到人类的体内研究。

摘要

年龄相关性黄斑变性(AMD)是60>患者失明的最常见原因,影响全球约3000万人。AMD 是一种受环境和遗传因素影响的多因素疾病,由于视网膜色素上皮 (RPE) 细胞变性,随后出现感光器降解,导致视网膜功能受损。理想的治疗方法包括移植分泌神经保护因子的健康RPE细胞,以防止RPE细胞死亡和光感受器变性。由于功能和遗传相似性以及侵入性较小的活检的可能性,建议移植虹膜色素上皮(IPE)细胞作为退化RPE的替代品。通过睡美人(SB100X)转座子介导的转染,可以实现低数量的视网膜下移植细胞分泌神经保护因子,这些转染体的基因编码色素上皮衍生因子(PEDF)和/或粒细胞巨噬细胞集落刺激因子(GM-CSF)。我们建立了来自各种物种(包括啮齿动物,猪和牛)的RPE和IPE细胞的分离,培养和SB100X介导的转染。球体被外植,角膜和晶状体被移除以进入虹膜和视网膜。使用定制的刮刀,从分离的虹膜中取出IPE细胞。为了收获RPE细胞,可能需要胰蛋白酶孵育,具体取决于物种。然后,使用RPE定制的刮刀,将细胞悬浮在培养基中。接种后,每周监测细胞两次,并在达到汇合点后,通过电穿孔转染。通过qPCR、WB、ELISA、免疫荧光和功能测定证实了基因整合、表达、蛋白分泌和功能检测。根据物种的不同,每只眼睛可以分离出30,000-500万(RPE)和10,000-150万(IPE)细胞。基因修饰细胞显示出显着的PEDF / GM-CSF过表达,具有降低氧化应激的能力,并为离体分析和可转移到人类的体内研究提供了灵活的系统,以开发眼部基因治疗方法。

引言

我们小组正专注于开发再生方法,通过基于RPE和IPE的非病毒基因疗法来治疗神经视网膜变性,即AMD。这种疗法的临床前建立需要可移植给人类的 体外 模型。因此,这里介绍的研究目标是为原代RPE和IPE细胞的分离,培养和基因工程提供方案。建立从多个物种中分离PE细胞的基本原理是有力地确认该方法的安全性和有效性,并提高其可重复性和可转移性。可用的人RPE细胞系ARPE-19与原代细胞不同(例如,它们的色素较少),因此对于临床前分析的价值有限1。此外,非人类哺乳动物细胞可以以更低的成本和更大的数量购买;人类供体组织可以从各种眼库获得,但可用性有限且昂贵。最后,新的高级治疗药物产品(ATMP,即细胞,组织或基因治疗药物产品)需要在患者中测试之前至少应用于两种不同的物种,并且这些 体内 研究要求制备同种异体细胞移植。

视网膜神经退行性疾病是工业化国家失明的主要原因,包括AMD等常见疾病,以及视网膜色素变性等罕见疾病,其中视网膜细胞死亡最终导致失明。在某些情况下,RPE细胞,光感受器和视网膜神经节细胞(RGC)损伤可以减慢,但目前没有治愈性疗法可用。ATMPs具有纠正基因缺陷,整合治疗基因或替代退化细胞的潜力,从而能够开发针对AMD等疾病的再生和治愈疗法;13种基因疗法已经获得上市批准,包括治疗RPE65突变相关视网膜变性的疗法2,3。在老年人(>60岁)中,全世界约有3000万人受到新生血管(nvAMD)或无血管(aAMD)AMD4的影响。这两种形式都是由年龄相关的触发因素诱导的,包括氧化损伤,功能障碍和RPE细胞的丧失,然后是光感受器降解,除其他外(例如遗传风险等位基因,吸烟,高血压)5,6。在 nvAMD 中,血管生成和抗血管生成因子的不平衡会加重发病机制,而血管生成血管内皮生长因子 (VEGF) 可诱导脉络膜新生血管形成 (CNV)。迄今为止,只有nvAMD可以通过每月玻璃体内注射VEGF蛋白抑制剂来抑制CNV来治疗;尚无有效的治疗方法可用于aAMD6,7。

几项研究评估了基于细胞的疗法来取代抗VEGF疗法:Binder等人进行的研究表明,新鲜收获的自体RPE细胞被移植到nAMD8,9,10的患者中,显示出适度的视力改善,但只有一小部分患者达到了最终的视力,足以使阅读成为可能。最近,一项I期临床研究使用胚胎干细胞衍生的RPE贴片治疗AMD,结果很有希望;即,在接受治疗的 10 名患者中,有 2 名患者的 RPE 贴片疗效、稳定性和安全性长达12 个月 11。此外,一些小组已经发表了一些研究,其中自体RPE-Bruch的膜脉络膜贴片从外周视网膜中收获并移植到黄斑12,13,14;并生成诱导多能干细胞(iPSC)衍生的RPE贴片用于移植15。对于aAMD,靶向补体途径的抗体已经在临床试验6,16中进行了测试并且使用单次玻璃体内注射腺相关病毒(AAV)载体的I期研究,编码地理萎缩(GA)患者中CD59因子(AAVCAGsCD59)的基因17;II期研究最近开始,旨在招募132名晚期aAMD患者,并在干预后2年评估结果18。最后,FocuS研究小组已开始进行I / II期多中心临床试验,评估编码人补体因子19的重组非复制AAV载体的安全性,剂量反应和有效性。

首先,再生AMD治疗的目标是移植功能性RPE细胞,这些细胞受损或丢失。然而,IPE和RPE细胞具有许多功能和遗传相似性(例如,吞噬作用和视黄醇代谢),并且由于IPE细胞更可行,因此它们已被提议作为RPE替代品20。尽管先前已经证明IPE细胞移植延迟了动物模型21,22中的光感受器变性并稳定了终末期nvAMD患者的视觉功能,但这些患者23没有观察到显着改善。缺乏疗效可能是由于移植细胞数量少和/或神经保护性视网膜因子失衡。另一种方法是移植转染的色素上皮细胞,这些细胞过度表达神经保护因子以恢复视网膜稳态,维持剩余的RPE细胞,并保护光感受器和RGC免受变性。因此,我们提出了一种新疗法,包括移植经过基因工程的功能性RPE或IPE细胞,以分泌神经保护和抗血管生成蛋白,如PEDF,GM-CSF或胰岛素样生长因子(IGF)。在多个物种中开发和分析这种方法的优点是,而不是使用一个细胞系,仅一个物种或人体组织:1)增加结果的可重复性和可转移性,如在独立实验室和不同物种中实现的许多研究所证明的那样1,24,25;2)猪或牛的细胞是可行的一次性的,无需牺牲额外的动物;3)特别是猪和牛细胞的可用性允许大型测试系列产生可靠的结果;4)从最常用的模型中分离,培养和遗传修饰细胞的知识使得能够在多个物种24,25,26中进行体内分析从而为第一批接受治疗的患者提供更高的风险 - 收益比;5)所提出的方案的灵活性允许其用于各种模型和实验设置以及所有基于眼细胞的治疗,有和没有基因工程。相反,细胞系或人体组织等替代技术仅具有有限的可转移性和/或有限的可处置性。ARPE-19等细胞系是初步实验的理想选择。然而,低色素沉着和高增殖与原代细胞1显着不同。从人类供体组织中分离的RPE和IPE细胞为可移植的体外实验提供了宝贵的来源;然而,我们从美国眼库获得人体组织,这意味着该组织至少有两天大(去核后),需要漫长而昂贵的运输,但当地供体组织没有足够的量进行生产性研究。使用原代细胞的优势被来自其他组的多项研究证实,27,28。

为了开发一种基于细胞的非病毒基因疗法,使用SB100X转座子系统转染原代RPE和IPE细胞,这些细胞的基因编码为PEDF和/或GM-CSF,分别用于治疗nvAMD和aAMD,分别为29,30,31,32,我们首先建立了ARPE-19细胞的转1.接下来,在易于接近的牛和猪原代细胞中建立了分离和转染方案。现在,已经建立了来自五个不同物种的原代RPE和IPE细胞的分离和转染,从小型(如小鼠)到大型哺乳动物(如牛)。在源自人类供体眼睛的原代RPE和IPE细胞中得到证实30。符合良好生产规范(GMP)的ATMP生产也使用人类供体组织进行了验证33。最后,在体内评估了该方法在三种不同物种中的有效性,这些物种已经适应了该协议:小鼠,大鼠和兔子。在临床设置中,将从患者身上采集虹膜活检,IPE细胞将在洁净室中分离和转染,然后将细胞网膜下移植回同一患者体内。整个过程将在持续约60分钟的单次手术过程中进行。治疗方法的开发和对其效率的评估要求优秀的体外离体模型来实现稳健有效的基因递送方法,分析基因递送效率,治疗性蛋白质产生和神经保护作用,并产生细胞移植以在体内测试该方法1,24,25,29,30 .值得一提的是,该疗法已获得日内瓦州研究伦理委员会(编号:2019-00250)对临床Ib / IIa期试验的伦理批准,目前瑞士监管机构要求授权的最后临床前数据是使用所提出的协议收集的。在这方面,临床前体内数据显示CNV显著降低,安全性优良24、25、31。

本文介绍了从牛、猪、兔、大鼠和小鼠中分离和培养RPE/IPE细胞,以及使用整合 SB100X 转座子系统与电穿孔相结合作为有效的基因递送方法。特别是,转染原代PE细胞以过表达PEDF和GM-CSF。这些方案的收集使得 体外体内 研究能够在ATMP开发的所有临床前阶段进行。此外,该设置有可能适应其他感兴趣的基因和疾病。

研究方案

涉及动物的协议由经过认证的人员执行,并经瑞士日内瓦州安全,安全和健康省(DSES),Domaine de l'expérimentation animale授权,并根据ARVO关于在眼科和视觉研究中使用动物的声明(批准号:GE/94/17)。成年健康的布朗挪威大鼠,C57BL / 6小鼠和新西兰白兔通过过量的戊巴比妥(150mg / kg)稀释在0.9%NaCl腹腔内注射安乐死,并在牺牲后立即对眼睛进行去核。猪眼和牛眼在牺牲后6小时内从当地屠宰场获得,并在冰上运送到实验室。

1. 准备前

  1. 准备完整的培养基(DMEM / Ham的F12补充10%胎牛血清(FBS),80 U / mL青霉素/ 80μg/ mL链霉素和2.5μg/ mL两性霉素B)。在37°C水浴中加热培养基,1x PBS和0.25%胰蛋白酶(如有必要)。
  2. 将无菌悬垂物放入抽油烟机中,以准备无菌工作场所。在烟罩内引入所有需要的无菌器械和材料。
    注意:只有眼睛的去核和剩余肌肉组织和皮肤的清洁是在罩外进行的手术,其余的步骤必须在罩内进行。

2. 大鼠/小鼠PE细胞的分离

  1. 在对动物实施安乐死后,使用弯曲的剪刀和Colibri镊子对眼睛进行去核。使用剪刀和镊子(非无菌)清洁眼睛上剩余的肌肉组织和皮肤。
    注意:用于眼睛去核和清洁的剪刀和镊子的大小取决于物种(例如,对于大鼠和小鼠,仪器将小于用于猪和牛的器械)(见图S1)。
    1. 将眼睛收集在充满非无菌PBS的50 mL管中,并将管转移到层流罩中。通过浸没在碘基溶液中2分钟来消毒眼睛,然后将其转移到装有无菌PBS的培养皿中。
  2. 灯泡的打开
    1. 将眼睛转移到无菌培养皿后,用Colibri或尖镊子将眼睛牢牢地靠近视神经。用18 G针在虹膜极限附近(在pars plana和ora serrata之间)打一个洞。将小剪刀插入孔中,并在虹膜周围切割。取出前段(角膜、晶状体和虹膜),然后将其放入培养皿中。将球茎与玻璃体一起放置,直到分离出RPE细胞。
  3. 分离IPE细胞
    1. 取下晶状体,用细镊子小心地拉出含有IPE细胞的虹膜。将虹膜放入培养皿中,用无菌PBS清洗,然后将其留在PBS中,直到准备好更多的虹膜。
    2. 重复步骤2.2.1至2.3.1,让当天所有眼睛都做好准备。
    3. 每片虹膜加入50μL0.25%胰蛋白酶,并在37°C下孵育10分钟。 除去胰蛋白酶,每虹膜加入150μL完整培养基,并用扁平的火抛光巴斯德移液管精细刮擦IPE;使用细镊子固定组织。收集细胞悬浮液并放入1.5 mL管中。使用10μL细胞悬浮液以1:3稀释,用台盼蓝对Neubauer室中的细胞进行计数34,35。
    4. 如果不立即转染,则在1mL完全培养基(10%FBS)中将200,000个细胞/孔接种在24孔板(100,000个细胞/ cm2)中(接种见 表1)。将板置于培养箱中,并在37°C,5%CO2下培养。
      注意:可能需要将几只眼睛聚集在一起,以便有足够的细胞进行接种。
  4. RPE细胞的分离
    1. 用薄镊子从后段去除玻璃体和视网膜。避免损害视网膜色素上皮。
    2. 用#10手术刀将球段切成两半,使地球完全打开并用无菌PBS清洗。
    3. 每只眼睛加入50μL0.25%胰蛋白酶,并在37°C下孵育10分钟。 除去胰蛋白酶,每球加入150μL完整培养基,并用圆形手术刀细腻地刮擦RPE细胞;使用细镊子固定组织。收集细胞悬浮液并将其放入1.5 mL管中。取10μL细胞悬浮液;用台盼蓝以1:4稀释,以计数Neubauer室中的细胞。
    4. 请参阅步骤 2.3.4。
      注意:可能需要将几只眼睛聚集在一起,以便有足够的细胞进行接种。

3. 兔PE细胞的分离

  1. 按照步骤 2.1 至 2.1.1 中所述执行清洁和消毒。
  2. 将一只眼睛放在无菌纱布敷上,并将其牢固地靠近视神经。用手术刀#11和剪刀在边缘下约2毫米处睁开眼睛。取出前段(角膜、晶状体和虹膜),然后将其放入培养皿中。将球茎与玻璃体一起放置,直到分离出RPE细胞。
  3. 分离IPE细胞
    1. 执行步骤 2.3.1。用手术刀#10切割,从虹膜上取出睫状体。
    2. 制备2个鸢尾花后,用1mL的0.25%胰蛋白酶在37°C孵育10分钟;在此期间,可以分离RPE细胞(参见步骤3.4)。除去胰蛋白酶,将1 mL完整培养基加入虹膜中,并用扁平的火抛光巴斯德移液管仔细刮擦分离细胞。通过移液小心地重悬细胞,并将细胞悬浮液转移到1.5mL管中。取10μL细胞悬浮液,用台盼蓝稀释1:3以计数Neubauer室中的细胞。
    3. 请参阅步骤 2.3.4。
  4. RPE细胞的分离
    1. 执行步骤 2.4.1。
    2. 将无菌纱布放入12孔板中,并将灯泡放在纱布上。
    3. 用PBS清洗并执行步骤2.4.3。
      注:使用弯曲的火抛光巴斯德移液器。
    4. 在120×g下离心细胞10分钟。
    5. 请参阅步骤 2.3.4。

4. 猪PE细胞的分离

  1. 按照步骤 2.1 中所述执行清洁。用PBS清洗,在碘基溶液中浸泡2分钟,用PBS冲洗眼睛。继续执行步骤 3.2。
  2. 分离IPE细胞
    1. 执行步骤 3.3.1。制备2个虹膜后,加入1mL完整培养基,并通过用扁平的火抛光巴斯德移液管仔细刮擦来分离细胞。将细胞悬浮液转移到1.5mL管中。取10μL细胞悬浮液,用台盼蓝稀释1:4以计数Neubauer室中的细胞。
    2. 请参阅步骤 2.3.4。
  3. RPE细胞的分离
    1. 执行步骤 2.4.1。将灯泡放入培养皿中,用PBS清洗。用 1 mL 完整培养基填充灯泡。
    2. 使用弯曲的火抛光巴斯德移液器,小心地去除RPE细胞。确保从底部刮到顶部,以避免脉络膜 - 布鲁赫膜复合物滑落。使用1,000μL移液管收集灯泡内的细胞悬浮液,然后转移到1.5mL管中进行重悬。取10μL细胞悬浮液,用台盼蓝稀释1:8以计数Neubauer室中的细胞。
    3. 请参阅步骤 2.3.4。

5. 牛PE细胞的分离

  1. 按照步骤 2.1 中所述执行清洁。用PBS清洗,在碘基溶液中浸泡2分钟,用PBS冲洗眼睛。继续执行步骤 3.2。
  2. 分离IPE细胞
    1. 执行步骤 3.3.1。制备两个鸢尾花后,用2mL 0.25%胰蛋白酶在37°C孵育10分钟。在此期间,可以分离RPE细胞(参见步骤5.3)。
    2. 除去胰蛋白酶,向虹膜中加入2 mL完整培养基,并用扁平的火抛光巴斯德移液管仔细刮擦分离细胞。将细胞悬浮液转移到15 mL管中。在120×g下离心细胞10分钟。 取10μL细胞悬浮液,用台盼蓝稀释1:4以计数Neubauer室中的细胞。
    3. 如果不立即转染,则在3mL完整培养基(10%FBS)的6孔板中接种320,000个细胞/孔(接种见 表1)。将板置于培养箱中,并在37°C,5%CO2下培养。
  3. RPE细胞的分离
    1. 按照步骤 2.4.1 操作。将灯泡放入培养皿中,用PBS清洗。准备2只眼睛后,用胰蛋白酶填充灯泡约3/4,并在37°C下孵育25分钟,将培养皿的盖子放在球茎顶部。
    2. 除去胰蛋白酶,加入1 mL完整培养基。执行步骤 4.3.2。在120×g下离心细胞10分钟。
    3. 请参阅步骤 5.2.3。

6. 栽培 - 介质变化

  1. 在37°C和5%CO 2的湿润培养箱中,在DMEM / Ham的F12中培养细胞,补充有10%FBS,80 U / mL青霉素/ 80μg/ mL链霉素和2.5μg/ mL两性霉素B。3-4天后,上下移液以收集非贴壁细胞,并将一半体积放入另一个孔中。用完整的培养基填充多达 1 mL。
    注意:这允许具有足够大的表面,以便隔离所有细胞以附着并最大化输出。
  2. 再过3-4天后重复细胞收集,但这次是将两个孔中的非贴壁细胞汇集到一个孔中(例如,C1中的A1 + B1)。向所有孔中加入培养基。观察细胞并每周更换培养基2次(对于6和24孔板,分别使用3和1mL /孔)。当细胞达到汇合时,切换到具有1%FBS的完整培养基或使用细胞进行实验(例如,转染)。
    注意:RPE和IPE细胞分别在分离后3-4周和4-5周后汇合。证实了细胞培养物纯度,检查了Johnen及其同事所描述的细胞形态(色素沉着细胞)和特异性标记物36。

7. 原代聚乙烯细胞的电穿孔

  1. 前1、37所述进行电穿孔。
  2. 根据转染的细胞数量,使用6孔,24孔或48孔板(见 表2)将细胞接种在没有抗生素或抗真菌剂的培养基中。在接下来的2周内,用含有青霉素(80 U / mL),链霉素(80μg / mL)和两性霉素B(2.5μg/ mL)的培养基加入滴剂,每周两次。转染后2周完全交换培养基。
  3. 为了确定细胞生长,转染效率和蛋白质分泌,每周通过显微镜监测细胞并通过蛋白质印迹分析细胞培养物上清液。在终止培养之前,取24小时细胞培养上清液以通过ELISA定量蛋白质分泌,计数细胞,按照制造商的说明(参见材料表)通过基于图像的细胞术测量荧光(如果是Venus转染的细胞),并收集细胞沉淀以进行基于RT-qPCR的基因表达分析。
    注:这些方法不包括在本文中,因为它的目的不是详细解释细胞的分析,而是它们的分离。所有物种的细胞接种密度都是相同的(100,000个细胞/ cm2),但由于分离的细胞数量不同,因此使用不同的板。此外,对于小鼠,大鼠和兔子,可能需要汇集2-3只眼睛以有足够的细胞进行接种。
物种胰蛋白酶治疗N° IPE 电池N° RPE 电池接种板(100,000个细胞/cm2)
小鼠/大鼠是的~50,000~150,00024 孔板
是的~350,000~2,500,00024 孔板
~1,000,000~3,000,00024 孔板
是的~1,700,000~5,000,0006 孔板

表1:从不同物种的眼睛中分离出的原代PE细胞的数量。

名字面积容积介质胰蛋白酶用于停止胰蛋白酶作用的容量培养基播种密度
6 孔板9.6 平方厘米3.0 毫升0.5 毫升1.0 毫升3x105
24孔板2.0 平方厘米1.0 毫升0.2 毫升0.8 毫升5x104
48孔板1.1 平方厘米0.5 毫升0.1 毫升0.4 毫升0.5-1x104

表2:细胞培养体积和接种密度。

结果

从不同哺乳动物物种中分离PE
使用上述方案,IPE和RPE细胞成功从五种不同物种中分离和培养。从每个程序中获得的细胞数量取决于眼睛的种类和大小(表1)。如图 1所示,细胞显示出典型的PE细胞形态和色素沉着(除了显示的兔细胞,来自新西兰白化(NZW)兔)。在分离后21天,细胞汇合,准备用于进一步的实验(例如,转染)。必须注意的是,?...

讨论

拥有分离和培养PE细胞的标准化方法是开发视网膜退行性疾病新治疗方法的基础。通过这里提出的方案,PE细胞可以从不同物种中成功分离并长期培养(到目前为止,最长的培养物维持了2年1,38);观察到典型的PE细胞形态、色素沉着和功能(图1、图2)。请注意,特别是对于纯RPE培养物,重要的是完全提取视?...

披露声明

作者没有什么可透露的。

致谢

感谢Gregg Sealy和Alain Conti的出色技术援助。这项工作得到了欧盟委员会在第七框架计划,瑞士国家科学基金会和Schmieder-Bohrisch基金会的背景下的支持。Z.I.获得了欧洲研究委员会,ERC Advanced [ERC-2011-ADG 294742]和B.M.W.的资助,获得了富布赖特研究资助和瑞士政府卓越奖学金。

材料

NameCompanyCatalog NumberComments
12-well platesCorning353043
24-well platesCorning353047
48-well platesThermoFisher Scientific150687
6-well plateGreiner7657160
BetadineMundipharma
Bonn micro forceps flat
Colibri forceps (sterile)
CytoTox-Glo Cytotoxicity AssayPromegaG9291
DMEM/Ham`s F12Sigma-AldrichD8062
Drape (sterile)Mölnlycke Health Care800530
Electroporation buffer 3P.143P Pharmaceutical
FBSBrunschwigP40-37500
Forceps (different size) (sterile)
Gauze compressPROMEDICAL AG25403
NaCl (0.9%)Laboratorium Dr. Bichsel AG1000090
Needle (18G) TerumoTER-NN1838R
Neon Transfection kit 10 µLThermoFisher ScientificMPK1096
Neon Transfection SystemThermoFisher ScientificMPK5000S
Neubauer chamberMarienfeld-superior640010
Pasteur pipette (fire-polish)Witeg4100150
PBS 1XSigma-AldrichD8537
Penicillin/StreptomycinSigma-AldrichP0781-100
Pentobarbital (Thiopental Inresa)Ospedalia AG31408025
Petri dishThermoFisher Scientific150288
pFAR4-PEDF
pFAR4-SB100X
pFAR4-VenusPastor et al., 2018. Kindly provided by Prof. Scherman and Prof. Marie
pSB100X (250 ng/µL)Mátés et al., 2009. Provide by Prof. Izsvak
pT2-CAGGS-VenusJohnen et al., 2012
pT2-CMV-GMCSF-His plasmid DNA (250 ng/µL)Cloned in our lab
pT2-CMV-PEDF-His plasmid DNA (250 ng/µL)Pastor et al., 2018
scarpel no. 10Swann-Morton501
scarpel no. 11Swann-Morton503
Sharp-sharp tip curved Extra Fine Bonn Scissors (sterile) 
Sharp-sharp tip straight Extra Fine Bonn Scissors (sterile)
Tali Image-Based CytometerThermoFisher ScientificT10796
Trypsin 0.25% ThermoFisher Scientific25050014
Trypsin 5%/EDTA 2%Sigma-AldrichT4174
Vannas spring scissors curved (sterile)

参考文献

  1. Johnen, S., et al. Sleeping Beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Investigative Ophthalmology and Visual Science. 53 (8), 4787-4796 (2012).
  2. Prado, D. A., Acosta-Acero, M., Maldonado, R. S. Gene therapy beyond luxturna: A new horizon of the treatment for inherited retinal disease. Current Opinion in Ophthalmology. 31 (3), 147-154 (2020).
  3. Russell, S., et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. The Lancet. 390, 849-860 (2017).
  4. Age Related Macular Degeneration and Data and Statistics. NIH Available from: https://nei.nih.gov/learn-about-eye-health/resources-for-health-educators/eye-health-data-and-statistics/age-related-macular-degeneration-amd-data-and-statistics (2020)
  5. Al-Zamil, W. M., Yassin, S. A. Recent developments in age-related macular degeneration: A review. Clinical Interventions in Aging. 12, 1313-1330 (2017).
  6. Stahl, A. The diagnosis and treatment of age-related macular degeneration. Deutsches Arzteblatt International. 117, 513-520 (2020).
  7. Mitchell, P., Liew, G., Gopinath, B., Wong, T. Y. Age-related macular degeneration. The Lancet. 392, 1147-1159 (2018).
  8. Binder, S., et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. American Journal of Ophthalmology. 133 (2), 215-225 (2002).
  9. Binder, S., et al. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Investigative Ophthalmology and Visual Science. 45 (11), 4151-4160 (2004).
  10. Binder, S. . The Macula. Diagnosis, treatment and future trends. , 7985-7987 (2004).
  11. da Cruz, L., et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nature Biotechnology. 36 (4), 1-10 (2018).
  12. Stanga, P. E., et al. Retinal pigment epithelium translocation after choroidal neovascular membrane removal in age-related macular degeneration. Ophthalmology. 109 (8), 1492-1498 (2002).
  13. Van Zeeburg, E. J. T., Maaijwee, K. J. M., Missotten, T. O. A. R., Heimann, H., Van Meurs, J. C. A free retinal pigment epitheliumchoroid graft in patients with exudative age-related macular degeneration: Results up to 7 years. American Journal of Ophthalmology. 153 (1), 120-127 (2012).
  14. Chen, F. K., et al. Long-term visual and microperimetry outcomes following autologous retinal pigment epithelium choroid graft for neovascular age-related macular degeneration. Clinical and Experimental Ophthalmology. 37 (3), 275-285 (2009).
  15. Mandai, M., et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. New England Journal of Medicine. 376 (11), 1038-1046 (2017).
  16. Akyol, E., Lotery, A. Gene, cell and antibody-based therapies for the treatment of age-related macular degeneration. Biologics: Targets and Therapy. 14, 83-94 (2020).
  17. Hemera Biosciences. Treatment of advanced dry age related macular degeneration with AAVCAGsCD59. ClinicalTrialsgov. , (2019).
  18. , . Intravitreal AAVCAGsCD59 for advanced dry age-related macular degeneration (AMD) with geographic atrophy (GA). ClinicalTrialsgov. , (2020).
  19. Gyroscope Therapeutics. First in human study to evaluate the safety and efficacy of GT005 administered in subjects with dry AMD. ClinicalTrialsgov. , (2019).
  20. Thumann, G., et al. Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Archives of Ophthalmology. 118 (10), 1350-1355 (2000).
  21. Thumann, G., Salz, A. K., Walter, P., Johnen, S. Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells. Graefe's Archive for Clinical and Experimental Ophthalmology. 247 (3), 363-369 (2009).
  22. Crafoord, S., Geng, L., Seregard, S., Algvere, P. V. Photoreceptor survival in transplantation of autologous iris pigment epithelial cells to the subretinal space. Acta Ophthalmologica Scandinavica. 80 (4), 387-394 (2002).
  23. Aisenbrey, S., et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: A 3-year follow-up. Archives of Ophthalmology. 124 (2), 183-188 (2006).
  24. Garcia-Garcia, L., et al. Long-term PEDF release in rat iris and retinal epithelial cells after sleeping beauty transposon-mediated gene delivery. Molecular Therapy - Nucleic Acids. 9, 1-11 (2017).
  25. Kropp, M., et al. Results of a biodistribution study of Venus transfected pigment epithelial cells transplanted subretinally in rabbits. Association for Research in Vision and Ophthalmology. , (2016).
  26. Kropp, M., et al. Improved transferability of a disease model for avascular age-related macular degeneration (AMD) to evaluate cell-based gene therapies using aged mice. ISSCR Annual Meeting. , (2020).
  27. Uebersax, E. D., Grindstaff, R. D., Defoe, D. M. Survival of the retinal pigment epithelium in vitro: Comparison of freshly isolated and subcultured cells. Experimental Eye Research. 70 (3), 381-390 (2000).
  28. Fernandez-Godino, R., Garland, D. L., Pierce, E. A. Isolation, culture and characterization of primary mouse RPE cells. Nature Protocols. 11 (7), 1206-1218 (2016).
  29. Thumann, G., et al. Engineering of PEDF-expressing primary pigment epithelial cells by the sb transposon system delivered by pFAR4 plasmids. Molecular Therapy - Nucleic Acids. 6, 302-314 (2017).
  30. Pastor, M., et al. The antibiotic-free pFAR4 vector paired with the sleeping beauty transposon system mediates efficient transgene delivery in human cells. Molecular Therapy - Nucleic Acids. 11, 57-67 (2018).
  31. Hernández-Pinto, A., et al. PEDF peptides promote photoreceptor survival in rd10 retina models. Experimental Eye Research. 184, 24-29 (2019).
  32. Bascuas, T., et al. Non-virally transfected primary human pigment epithelium cells overexpressing the oxidative stress reduction factors PEDF and GM-CSF to treat retinal neurodegeneration neurodegenerationl. Human Gene Therapy. 30 (11), (2019).
  33. Kropp, M., et al. Development of GMP-compliant production of freshly isolated and transfected iris pigment epithelial (IPE) cells to treat age-related macular degeneration (AMD). Human Gene Therapy. Meeting abstract: P371 Poster. , (2017).
  34. . Marienfeld Technical information Neubauer-improved Available from: https://www.marienfeld-superior.com/information-about-our-counting-chambers.html (2020)
  35. . Neubauer Haemocytometry Available from: https://www.emsdiasum.com/microscopy/technical/datasheet/68052-14.aspx (2020)
  36. Johnen, S., Wickert, L., Meier, M., Salz, A. K., Walter, P., Thumann, G. Presence of xenogenic mouse RNA in RPE and IPE cells cultured on mitotically inhibited 3T3 fibroblasts. Investigative Ophthalmology and Visual Science. 52 (5), 2817-2824 (2011).
  37. Bascuas, T., et al. Induction and analysis of oxidative stress in sleeping beauty transposon-transfected human retinal pigment epithelial cells. Journal of Visualized Experiments. , e61957 (2020).
  38. Thumann, G., et al. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor. Gene Therapy. 17, 181-189 (2010).
  39. Thumann, G., et al. Transplantation of autologous iris pigment epithelium to the subretinal space in rabbits. Transplantation. 68, 195-201 (1999).
  40. Bilak, M. M., et al. Pigment epithelium-derived factor (PEDF) protects motor neurons from chronic glutamate-mediated neurodegeneration. Journal of Neuropathology and Experimental Neurology. 58, 719-728 (1999).
  41. Duh, E. J., et al. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Investigative Ophthalmology and Visual Science. 43, 821-829 (2002).
  42. Chichagova, V., et al. Cellular regeneration strategies for macular degeneration: Past, present and future. Eye. 32 (5), 946-971 (2018).
  43. Veckeneer, M., et al. angiography documented reperfusion of translocated autologous full thickness RPE-choroid graft for complicated neovascular age-related macular degeneration. Eye. 31, 1274-1283 (2017).
  44. Afshari, F. T., et al. Integrin activation or alpha9 expression allows retinal pigmented epithelial cell adhesion on Bruch's membrane in wet age-related macular degeneration. Brain. 133, 448-464 (2010).
  45. Tezel, T. H., Kaplan, H. J., Del Priore, L. V. Fate of human retinal pigment epithelial cells seeded onto layers of human Bruch's membrane. Investigative Ophthalmology and Visual Science. 40 (2), 467-476 (1999).
  46. Tezel, T. H., Del Priore, L. V., Kaplan, H. J. Reengineering of aged Bruch's membrane to enhance retinal pigment epithelium repopulation. Investigative Ophthalmology and Visual Science. 45 (9), 3337-3348 (2004).
  47. Tezel, T. H., Del Priore, L. V. Repopulation of different layers of host human Bruch's membrane by retinal pigment epithelial cell grafts. Investigative Ophthalmology and Visual Science. 40 (3), 767-774 (1999).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

168 RPE IPE PEDF GM CSF

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。