A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Here, a protocol to isolate and transfect primary iris and retinal pigment epithelial cells from various mammals (mice, rat, rabbit, pig, and bovine) is presented. The method is ideally suited to study ocular gene therapy approaches in various set-ups for ex vivo analyses and in vivo studies transferable to humans.
Age-related macular degeneration (AMD) is the most frequent cause of blindness in patients >60 years, affecting ~30 million people worldwide. AMD is a multifactorial disease influenced by environmental and genetic factors, which lead to functional impairment of the retina due to retinal pigment epithelial (RPE) cell degeneration followed by photoreceptor degradation. An ideal treatment would include the transplantation of healthy RPE cells secreting neuroprotective factors to prevent RPE cell death and photoreceptor degeneration. Due to the functional and genetic similarities and the possibility of a less invasive biopsy, the transplantation of iris pigment epithelial (IPE) cells was proposed as a substitute for the degenerated RPE. Secretion of neuroprotective factors by a low number of subretinally-transplanted cells can be achieved by Sleeping Beauty (SB100X) transposon-mediated transfection with genes coding for the pigment epithelium-derived factor (PEDF) and/or the granulocyte macrophage-colony stimulating factor (GM-CSF). We established the isolation, culture, and SB100X-mediated transfection of RPE and IPE cells from various species including rodents, pigs, and cattle. Globes are explanted and the cornea and lens are removed to access the iris and the retina. Using a custom-made spatula, IPE cells are removed from the isolated iris. To harvest RPE cells, a trypsin incubation may be required, depending on the species. Then, using RPE-customized spatula, cells are suspended in medium. After seeding, cells are monitored twice per week and, after reaching confluence, transfected by electroporation. Gene integration, expression, protein secretion, and function were confirmed by qPCR, WB, ELISA, immunofluorescence, and functional assays. Depending on the species, 30,000-5 million (RPE) and 10,000-1.5 million (IPE) cells can be isolated per eye. Genetically modified cells show significant PEDF/GM-CSF overexpression with the capacity to reduce oxidative stress and offers a flexible system for ex vivo analyses and in vivo studies transferable to humans to develop ocular gene therapy approaches.
Our group is focusing on the development of regenerative approaches to treat neuroretinal degeneration, i.e., AMD, by RPE- and IPE-based non-viral gene therapy. The pre-clinical establishment of such therapies necessitates in vitro models transferable to human beings. Thus, the goal of the study presented here is to deliver protocols for the isolation, culture, and genetic engineering of primary RPE and IPE cells. The rationale to establish the isolation of PE cells from multiple species is to robustly confirm safety and efficiency of the approach and increase its reproducibility and transferability. The available human RPE cell line ARPE-19 differs from primary cells (e.g., they are less pigmented) and is, therefore, only of limited value for pre-clinical analyses1. Additionally, non-human mammalian cells can be purchased for less cost and in bigger quantities; human donor tissue can be obtained from various Eye Banks, but the availability is limited and expensive. Finally, new Advanced Therapy Medicinal Products (ATMP, i.e., cell, tissue, or Gene Therapy Medicinal Product) need to be applied in at least two different species before being tested in patients and these in vivo studies request the preparation of allogenic cell transplants.
Retinal neurodegenerative diseases are the leading cause of blindness in industrialized countries, comprising common diseases like AMD, as well as rare diseases like retinitis pigmentosa, in which the retinal cell death eventually leads to blindness. RPE cells, photoreceptor, and retinal ganglion cells (RGC) damage can in some cases be slowed, but there are currently no curative therapies available. ATMPs offer the potential to correct gene defects, integrate therapeutic genes or replace degenerated cells, thereby enabling the development of regenerative and curative therapies for diseases such as AMD; 13 gene therapies already got marketing approval including a therapy to treat RPE65 mutation-associated retinal degeneration2,3. Among older adults (>60 years), ~30 million people worldwide are affected by either neovascular (nvAMD) or avascular (aAMD) AMD4. Both forms are induced by age-associated triggers including oxidative damage, function impairment and loss of RPE cells followed by photoreceptor degradation, among others (e.g. genetic risk alleles, smoking, hypertension)5,6. In nvAMD, pathogenesis is aggravated by an imbalance of angiogenic and anti-angiogenic factors in favor of the angiogenic Vascular Endothelial Growth Factor (VEGF) that induces choroidal neovascularization (CNV). To date, only nvAMD is treatable by monthly intravitreal injections of inhibitors of the VEGF protein to suppress the CNV; no effective treatment is yet available for aAMD6,7.
Several studies evaluated cell-based therapies to replace the anti-VEGF therapy: studies made by Binder et al., in which freshly-harvested autologous RPE cells were transplanted into patients with nAMD8,9,10, showed moderate visual improvement, but only a small group of patients reached a final visual acuity high enough to enable reading. Recently, a phase I clinical study used an embryonic stem cell-derived RPE patch to treat AMD with promising results; i.e., efficacy, stability, and safety of the RPE patch for up to 12 months in 2 of the 10 patients treated11. In addition, several groups have published studies in which autologous RPE-Bruch's membrane-choroid patches were harvested from the peripheral retina and transplanted to the macula12,13,14; and induced pluripotent stem cell (iPSC)-derived RPE patches were generated for transplantation15. For aAMD, antibodies targeting the complement pathway have been tested in clinical trials6,16 and a phase I study using a single intravitreal injection of an adeno-associated viral (AAV) vector coding the gene for the factor CD59 (AAVCAGsCD59) in patients with geographic atrophy (GA) was completed17; the phase II study recently started and aims to recruit 132 patients with advanced aAMD and to evaluate the outcome at 2 years post-intervention18. Finally, the FocuS study group has started a phase I/II multicenter clinical trial evaluating the safety, dose response and efficacy of a recombinant non-replicating AAV vector encoding a human complement factor19.
Primarily, the goal of a regenerative AMD therapy is the transplantation of functional RPE cells, which were damaged or lost. However, IPE and RPE cells share many functional and genetic similarities (e.g., phagocytosis and retinol metabolism), and because IPE cells are more feasibly harvested, they have been proposed as an RPE substitute20. Even though it has been previously demonstrated that the IPE cell transplantation delays photoreceptor degeneration in animal models21,22 and stabilizes visual function in patients with end-stage nvAMD, no significant improvement was observed in these patients23. The lack of efficacy may be due to the low number of transplanted cells, and/or the imbalance of neuroprotective retinal factors. An alternative approach would be to transplant transfected pigment epithelial cells that overexpress neuroprotective factors to restore retinal homeostasis, maintain remaining RPE cells, and protect photoreceptors and RGCs from degeneration. Consequently, we propose a new therapy that comprises the transplantation of functional RPE or IPE cells that have undergone genetic engineering to secrete neuroprotective and anti-angiogenic proteins, such as PEDF, GM-CSF or insulin-like growth factors (IGFs). The advantage of developing and analyzing this approach in several species instead of using a cell line, only one species, or human tissue is: 1) increased reproducibility and transferability of the results as shown by numerous studies realized in independent laboratories and different species1,24,25; 2) pig or bovine cells are feasibly disposable without the sacrifice of additional animals; 3) the availability of especially pig and bovine cells allows large test series to produce robust results; 4) the knowledge to isolate, culture and genetically modify cells from the mostly used models enables in vivo analyses in multiple species24,25,26 and thus offers an improved risk-benefit ratio for the first treated patients; 5) the flexibility of the protocol presented allows its use in various models and experimental set ups and for all ocular cell based therapies with and without genetic engineering. In contrast, alternative techniques as cell lines or human tissue are only of limited transferability and/or limited disposability. Cell lines such as the ARPE-19 are ideal for preliminary experiments; however, low pigmentation and high proliferation differ significantly from primary cells1. RPE and IPE cells, which are isolated from human donor tissue offer a precious source for transferable in vitro experiments; however, we obtain human tissue from an US-American Eye Bank meaning that the tissue is at least two days old (after enucleation) and requires a long and expensive transport, but local donor tissue is not available in sufficient amounts for a productive research. The advantage of the use of primary cells is confirmed by multiple studies from other groups27,28.
For the development of a cell-based non-viral gene therapy using the SB100X transposon system for transfecting primary RPE and IPE cells with the genes coding for PEDF and/or GM-CSF to treat nvAMD and aAMD, respectively29,30,31,32, we first established the transfection of ARPE-19 cells1. Next, the isolation and transfection protocols were established in readily accessible bovine and porcine primary cells. Now, the isolation and transfection of primary RPE and IPE cells from five different species has been established, from small (as mouse) to large mammals (as cattle). It was confirmed in primary RPE and IPE cells derived from human donor eyes30. The Good Manufacturing Practices (GMP)-compliant production of the ATMP was validated using human donor tissue as well33. Finally, both safety and efficiency of the approach were assessed in vivo in three different species for which the protocol has been adapted: mouse, rat, and rabbit. In the clinical set-up, an iris biopsy will be harvested from the patient and IPE cells will be isolated and transfected in the clean room, before the cells will be transplanted subretinally back into the same patient. The entire process will take place during a single surgical session that lasts approximately 60 minutes. The development of the treatment approach and the evaluation of its efficiency requested excellent in vitro and ex vivo models to implement robust and efficient gene delivery methods, to analyze efficiency of gene delivery, therapeutic protein production and neuroprotective effects, and to produce cell transplants to test the approach in vivo1,24,25,29,30. It is worth mentioning that the therapy has the ethical approval for a clinical phase Ib/IIa trial from the ethical commission for research of the Canton of Geneva (no. 2019-00250) and currently last pre-clinical data requested for authorization by Swiss regulatory authorities are collected using the presented protocol. In this regard, pre-clinical in vivo data demonstrated a significant reduction in CNV and excellent safety24,25,31.
Here, the isolation and culture of RPE/IPE cells from bovine, pig, rabbit, rat and mouse, and the use of the integrative SB100X transposon system combined with electroporation as an efficient gene-delivery method is described. Particularly, primary PE cells were transfected to overexpress PEDF and GM-CSF. The collection of these protocols enables the in vitro and in vivo studies to be performed in all pre-clinical phases of ATMP development. Moreover, the set-up has the potential to be adapted to other genes of interest and diseases.
The protocols in which animals were involved were carried out by certified personnel and after authorization by the cantonal Département de la sécurité, de l'emploi et de la santé (DSES), Domaine de l'expérimentation animale of Geneva, Switzerland, and according to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research (approval no. GE/94/17). Adult healthy Brown Norway rats, C57BL/6 mice, and New Zealand white rabbits were euthanized by an overdose of Pentobarbital (150 mg/kg) diluted in 0.9% NaCl injected intraperitoneal and the eyes were enucleated immediately after sacrifice. Porcine and bovine eyes were obtained from a local slaughterhouse within 6 hours of sacrifice and were transported to the laboratory on ice.
1. Before preparation
2. Isolation of rat/mouse PE cells
3. Isolation of rabbit PE cells
4. Isolation of pig PE cells
5. Isolation of bovine PE cells
6. Cultivation - medium change
7. Electroporation of primary PE cells
Species | Trypsin treatment | N° IPE cells | N° RPE cells | Plate for seeding (100,000 cells/cm2) |
Mouse/rat | Yes | ~50,000 | ~150,000 | 24-well plates |
Rabbit | Yes | ~350,000 | ~2,500,000 | 24-well plates |
Pig | No | ~1,000,000 | ~3,000,000 | 24-well plates |
Bovine | Yes | ~1,700,000 | ~5,000,000 | 6-well plates |
Table 1: Number of primary PE cells isolated from eyes from different species.
Name | Area | Volume medium | Trypsin | Volume medium to stop action of trypsin | Seeding density |
6-well plate | 9.6 cm² | 3.0 mL | 0.5 mL | 1.0 mL | 3x105 |
24-well plate | 2.0 cm² | 1.0 mL | 0.2 mL | 0.8 mL | 5x104 |
48-well plate | 1.1 cm² | 0.5 mL | 0.1 mL | 0.4 mL | 0.5-1x104 |
Table 2: Cell culture volumes and seeding densities.
PE isolation from different mammal species
Using the aforementioned protocols, IPE and RPE cells were successfully isolated and cultured from five different species. The number of cells obtained from each procedure depends on the species and size of the eye (Table 1). As shown in Figure 1, cells show typical PE cell morphology and pigmentation (except for rabbit cells shown, derived from albino New Zealand White (NZW) rabbits). At 21 days post-isolatio...
Having standardized methods to isolate and culture PE cells is fundamental in developing new therapy approaches for retinal degenerative diseases. With the protocols presented here, PE cells can be successfully isolated from different species and cultured for long periods (up to now, the longest culture was maintained for 2 years1,38); typical PE cell morphology, pigmentation and function was observed (Figure 1, ...
The authors have nothing to disclose.
A thank deserves to Gregg Sealy and Alain Conti for their excellent technical assistance. This work was supported by the European Commission in the context of the Seventh Framework Programme, the Swiss National Sciences Foundation, and the Schmieder-Bohrisch Foundation. Z.I. received funding from the European Research Council, ERC Advanced [ERC-2011-ADG 294742] and B.M.W. from a Fulbright Research Grant and Swiss Government Excellence Scholarship.
Name | Company | Catalog Number | Comments |
12-well plates | Corning | 353043 | |
24-well plates | Corning | 353047 | |
48-well plates | ThermoFisher Scientific | 150687 | |
6-well plate | Greiner | 7657160 | |
Betadine | Mundipharma | ||
Bonn micro forceps flat | |||
Colibri forceps (sterile) | |||
CytoTox-Glo Cytotoxicity Assay | Promega | G9291 | |
DMEM/Ham`s F12 | Sigma-Aldrich | D8062 | |
Drape (sterile) | Mölnlycke Health Care | 800530 | |
Electroporation buffer 3P.14 | 3P Pharmaceutical | ||
FBS | Brunschwig | P40-37500 | |
Forceps (different size) (sterile) | |||
Gauze compress | PROMEDICAL AG | 25403 | |
NaCl (0.9%) | Laboratorium Dr. Bichsel AG | 1000090 | |
Needle (18G) | Terumo | TER-NN1838R | |
Neon Transfection kit 10 µL | ThermoFisher Scientific | MPK1096 | |
Neon Transfection System | ThermoFisher Scientific | MPK5000S | |
Neubauer chamber | Marienfeld-superior | 640010 | |
Pasteur pipette (fire-polish) | Witeg | 4100150 | |
PBS 1X | Sigma-Aldrich | D8537 | |
Penicillin/Streptomycin | Sigma-Aldrich | P0781-100 | |
Pentobarbital (Thiopental Inresa) | Ospedalia AG | 31408025 | |
Petri dish | ThermoFisher Scientific | 150288 | |
pFAR4-PEDF | |||
pFAR4-SB100X | |||
pFAR4-Venus | Pastor et al., 2018. Kindly provided by Prof. Scherman and Prof. Marie | ||
pSB100X (250 ng/µL) | Mátés et al., 2009. Provide by Prof. Izsvak | ||
pT2-CAGGS-Venus | Johnen et al., 2012 | ||
pT2-CMV-GMCSF-His plasmid DNA (250 ng/µL) | Cloned in our lab | ||
pT2-CMV-PEDF-His plasmid DNA (250 ng/µL) | Pastor et al., 2018 | ||
scarpel no. 10 | Swann-Morton | 501 | |
scarpel no. 11 | Swann-Morton | 503 | |
Sharp-sharp tip curved Extra Fine Bonn Scissors (sterile) | |||
Sharp-sharp tip straight Extra Fine Bonn Scissors (sterile) | |||
Tali Image-Based Cytometer | ThermoFisher Scientific | T10796 | |
Trypsin 0.25% | ThermoFisher Scientific | 25050014 | |
Trypsin 5%/EDTA 2% | Sigma-Aldrich | T4174 | |
Vannas spring scissors curved (sterile) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved