JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出了一种使用透射电子显微镜(TEM) 原位 分析巨核细胞超微结构的方案。收集,固定,嵌入环氧树脂中并切割成超薄切片的小鼠骨髓。造影剂染色后,在120 kV的TEM显微镜下观察骨髓。

摘要

巨核细胞的分化和成熟与骨髓的细胞和细胞外成分密切相关。这些过程的特点是巨核细胞质中必需结构的逐渐出现,例如多倍体和多叶细胞核,称为分界膜系统(DMS)的内部膜网络以及循环血小板中将发现的致密和α颗粒。在本文中,我们描述了使用透射电子显微镜(TEM)对小鼠巨核细胞进行 原位 超微结构研究的标准化方案,从而可以识别定义其成熟阶段和骨髓中细胞密度的关键特征。骨髓被冲洗,固定,在乙醇中脱水,嵌入塑料树脂中,并安装以产生横截面。分别制备用于组织学和TEM观察的半薄片和薄切片。该方法可用于任何EM设施中的任何骨髓细胞,并且具有使用小样本量的优点,允许在同一小鼠上组合多种成像方法。

引言

巨核细胞是专门的大多倍体细胞,定位于骨髓中,负责血小板的产生1。它们起源于造血干细胞,通过复杂的成熟过程,在此期间,巨核细胞前体逐渐增加大小,同时在细胞质和细胞核2中经历广泛的伴随形态学变化。在成熟过程中,巨核细胞形成许多可区分的结构元素,包括:多叶细胞核,形成分界膜系统(DMS)的表面膜的内陷,没有细胞器的外围区域被基于肌动蛋白的细胞骨架网络包围,以及许多细胞器,包括α颗粒,致密颗粒,溶酶体和多个高尔基复合物。在超微结构水平上,观察到的主要修饰是细胞质区室化为由DMS3分隔的离散区域。这种广泛的膜供应将推动在血小板生产的初始阶段延长长细胞质过程,然后将在循环中重塑为血小板。巨核细胞分化和成熟过程中的任何缺陷都会在血小板计数和/或血小板功能方面影响血小板的产生。

几十年来,薄层透射电子显微镜(TEM)一直是首选的成像方法,可提供高质量的巨核细胞超微结构,这些超微结构塑造了我们对血栓形成生理学的理解4,5。本文重点介绍了一种标准化的TEM方法,该方法允许捕获天然骨髓微环境中原位发生的血小板生物发生过程,这也可以作为分析任何骨髓细胞类型的基础。我们提供巨核细胞从未成熟到完全成熟的发育的超微结构示例,这些超微结构示例将细胞质过程扩展到正弦6的微循环中。我们还描述了一种量化不同巨核细胞成熟阶段的简单程序,指导骨髓的再生和血小板生产能力。

研究方案

所有动物实验均按照欧洲标准2010/63 / EU和斯特拉斯堡大学动物实验伦理委员会(斯特拉斯堡动物实验管理局)进行。该协议原理图如图 1所示。

1. 骨髓采集和固定(图1A)

注意:此过程包括致癌、致突变和/或有毒物质,并在化学提取罩下进行。穿戴适当的防护装备,如手套和防护眼镜。

  1. 在二甲丁二酸缓冲液中制备由2.5%戊二醛组成的固定溶液(见 补充文件)。
  2. 骨髓采集
    1. 使用12-18周龄的成年C57BL / 6任何性别的小鼠。通过CO2 窒息和宫颈脱位对小鼠实施安乐死。
    2. 用一把细剪刀,剪开大腿周围的皮肤,用镊子把皮肤剥下来。切除爪子的四肢,然后在臀部和大腿之间切开。通过切开膝关节将胫骨与股骨分离,并使用手术刀去除胫骨和股骨上的粘附组织。
    3. 用锋利的剃须刀片去除骨骺。用镊子固定股骨时,使用装有卡地啶盐缓冲液的5 mL注射器和21 G针头将骨髓冲洗到充满2 mL卡可啶酸盐缓冲液的15 mL管中。为此,将针头的斜面插入骨髓开口,然后缓慢按压柱塞,直到骨髓排出。
  3. 通过快速浸入固定剂中进行骨髓固定。
    1. 冲洗后立即使用塑料移液管将骨髓圆筒转移到1mL新鲜戊二醛固定溶液(先前在1.1中制备)中,在室温下60分钟。
      注意:为了保护组织,请确保从骨骼解剖到固定步骤的整个过程在10分钟内完成。对于固定,确保固定溶液在室温下,以避免热休克。

2. 将骨髓嵌入琼脂糖中

注意:骨髓组织在不同的洗涤步骤中没有足够的粘结力来保持其完整性,并且材料很容易丢失。为了克服这个问题,在脱水之前用琼脂凝胶覆盖骨髓。

  1. 按照 补充文件中所述准备琼脂糖溶液。
  2. 在cacodylate缓冲液中洗涤第1.3节的固定骨髓,并使用塑料移液管将其小心地转移到载玻片上。使用温热的移液器,快速将一滴2%的液态琼脂滴入骨髓圆柱体。
    注意:琼脂在冷却时会迅速凝固。为了确保骨髓的均匀覆盖,琼脂溶液必须保持温暖,直到沉积到载玻片上。
  3. 快速将载玻片快速放在冰上,直到琼脂凝固(1-2分钟)。
  4. 在显微镜下,使用锋利的剃须刀片切割并丢弃骨髓圆柱体的四肢,因为这些区域可能存在组织压迫。将骨髓块转移到含有1mL二甲唑酸盐缓冲液的1.5mL微量离心管中。

3. 将骨髓嵌入树脂中

注意:树脂成分有毒;有些是致癌的,必须在化学提取罩下小心处理。使用适当的防护装备,如手套和防护眼镜。四氧化锇在室温下具有高度挥发性,其蒸气对眼睛,鼻子和喉咙非常有害。在丢弃之前,必须通过添加其体积两倍的植物油来中和2%的四氧化锇。

  1. 按照 补充文件中所述制备环氧树脂。
  2. 树脂包埋
    注意:在锇,乙酸铀酰和乙醇的连续浴中孵育期间,将样品保存在相同的微量离心管中。用巴斯德移液器吸出上清液。用于每个浴槽的溶液体积必须至少等于样品体积的10倍。
    1. 在4°C下用1%锇在二甲钕酸盐缓冲液中后固定块1小时,在卡钒酸盐缓冲液中洗涤一次,然后在蒸馏水中洗涤一次。
    2. 用4%乙酸铀酰在蒸馏水中染色1小时,在蒸馏水中洗涤两次。
    3. 在蒸馏水中通过一系列乙醇分级脱水:在75%乙醇中脱水4次5分钟,然后在95%乙醇中3次20分钟,然后在100%乙醇中3次20分钟。在此步骤中,从冰箱中取出一个环氧树脂注射器。
      注意:该协议可以在100%乙醇中暂停1小时。
    4. 为了获得骨髓内环氧树脂的均匀浸润和聚合,首先将块体在2个连续的环氧丙烷浴中孵育15分钟。
    5. 加入1:100%环氧丙烷和环氧树脂的1:1混合物,孵育1小时。将样品放在室温下的慢速旋转振荡器上。
    6. 加入100%环氧树脂,将样品在搅拌下孵育过夜。
    7. 加入100%环氧树脂保温2小时,仍在搅拌下。
    8. 在显微镜下,将骨髓块放入扁平的硅胶模具中。定向样品,以便随后对整个骨髓进行横向切片。用环氧树脂填充模具,并将其置于60°C下48小时。
      注:所有溶液(乙醇和环氧丙烷除外)均通过0.22μm过滤器过滤,以避免样品污染。为确保树脂充分聚合,请在填充模具时避免气泡。

4. 超薄切片(图1B)

注意:透射EM需要薄组织切片,电子可以通过这些切片产生细胞内部,内部细胞器(颗粒,内质网,高尔基体)的结构和组织的投影图像以及细胞内细胞膜的排列。

  1. 将样品块安装在超切片机支架中。将其放在样品架上。以45°修剪样品,以便用旋转的金刚石或钨铣刀去除组织周围多余的树脂。
  2. 使用装有水箱的金刚石刀刃将样品安装在超微量镜上。分别切割厚度为 500 nm 和 100 nm 的横向截面,用于组织学和透射电镜分析。用环收集水面上的浮动部分。
  3. 将 500 nm 厚的切片沉积在载玻片上,将 100 nm 厚的部分沉积在 200 目薄条铜网格上,下面用纸质滤光片过滤。为一个条件准备五个网格:首先弄脏两个网格,并在必要时保留剩余的三个网格作为备份。

5. 甲苯胺蓝染色组织学

注意:染色切片对于组织学很重要,原因有三个:1)确保组织实际被切割而不是树脂,2)检查内含物的质量,以及3)快速评估骨髓样品。如果这不正确,请在块中切得更深。

  1. 干燥半薄切片在加热板上滑动(60°C)。
  2. 在载玻片上加入过滤过的1%甲苯胺蓝/ 1%硼酸钠蒸馏水,并在热板(60°C)上加热1-2分钟。用蒸馏水清洗载玻片,让它在加热板上干燥。
  3. 用一滴聚(甲基丙烯酸丁酯-甲基丙烯酸甲酯)安装介质将切片安装在盖玻片上,并在光学显微镜下检查。

6. 用于TEM观察的重金属染色(图1C)

注意:对于造影剂,网格的上侧在每次连续浴的100μL滴剂上反转,并带有环。使用前,每个溶液被过滤0.22μm。通过轻轻接触滤纸上的网格侧,去除每个浴槽之间多余的液体。

  1. 用4%乙酸铀酰在蒸馏水中染色5分钟。
  2. 在蒸馏水中洗涤3次5分钟。
  3. 用柠檬酸铅染色3分钟。
  4. 在蒸馏水中洗涤3次5分钟。
  5. 将网格存放在下侧与滤纸接触,使其干燥。
    注:重金属在二氧化碳存在下发生反应。为了尽量减少沉淀物,避免在对比过程中空气位移,不要说话,保持环境平静并关闭空调。

7. 透射电镜(图1E)

注:这些切片在TEM显微镜中介绍,并在120 kV下检查。

  1. 首先在低放大倍率(<500x)下检查切片,以了解制备的一般方面(树脂中没有孔,切片中的褶皱/压缩,由于染色引起的沉淀物)。
  2. 然后以更高的放大倍率(〜2000x,以区分成熟阶段)检查切片。在整个横断面上手动计数来自每个成熟阶段的巨核细胞(参见关于如何直观地识别每个阶段的代表性结果)。
    注:网格的每个正方形被定义为一个用于检查的区域(对于200目铜网格,其等于16000μm2)。
  3. 为了评估巨核细胞的数量,仅量化被切片完全覆盖的正方形。为此,请使用基于范围筛选的模型。观察从截面的末端到另一个截面的第一个正方形范围,然后以相同的方式观察另一个范围,依此类推。使用此过程,全面,系统地逐个正方形地筛选整个骨髓横向剖面。
  4. 对于每个方块,对I期,II期或III期巨核细胞的数量进行评分。
    注意:需要更高的放大倍率来分析颗粒,DMS组织,细胞质区域的大小和多叶核。

结果

骨髓组织学
在光学显微镜下观察骨髓甲苯胺蓝组织学是快速分析整体组织结构的关键,例如组织致密性,微血管连续性以及巨核细胞的大小和形状图1D)。在超薄切片之前进行,以确定是否需要在骨髓块中更深地切割。由于它们的巨型尺寸和核叶,更成熟的巨核细胞可以很容易地用40倍的目标可视化。这为组织中成熟巨核细胞的密度及其对微血?...

讨论

直接检查巨核细胞在其原生环境中对于了解巨核细胞和血小板形成至关重要。在本文中,我们提供了一种透射电子显微镜方法,将骨髓冲洗和浸入固定相结合,允许 原位 解剖骨髓中巨核细胞形态发生整个过程的形态特征。

骨髓冲洗是这种方法的关键步骤,因为高质量冲洗的成功取决于操作员的实践和培训。虽然细腻,但冲洗骨髓是避免去除矿化骨的最佳方法,这通常...

披露声明

作者无需声明利益冲突。

致谢

作者要感谢Fabienne Proamer,Jean-Yves Rinckel,David Hoffmann,Monique Freund的技术援助。这项工作得到了ARMESA(医学和公共发展协会)、欧洲联盟通过欧洲区域发展基金(ERDF)和赠款ANR-17-CE14-0001-01向H.d.S.的支持。

材料

NameCompanyCatalog NumberComments
2,4,6-Tri(dimethylaminomethyl)phenol (DMP-30)Ladd Research Industries, USA21310
Agarose type LM-3 Low Melting Point AgarElectron Microscopy Sciences, USA1670-B
CaCl2 Calcium chloride hexahydrateMerck, Germany2083
Copper grids 200 mesh thin-barOxford Instrument, Agar Scientifics, EnglandT200-CU
Dimethylarsinic acid sodium salt trihydrateMerck, Germany8.20670.0250
Dodecenyl Succinic Anhydride (DDSA)Ladd Research Industries, USA21340
Double Edge Stainless Razor bladeElectron Microscopy Sciences-EMS, USAEM-72000
Ethanol absolutVWR International, France20821296
Filter paper, 90 mm diameterWhatman, England512-0326
Flat embedding silicone mouldOxford Instrument, Agar Scientific, EnglandG3533
Glutaraldehyde 25%Electron Microscopy Sciences-EMS, USA16210
Heat plate Leica EMMPLeica Microsystems GmbH, Austria705402
Histo Diamond Knife 45°Diatome, Switzerland1044797
JEOL 2100 Plus TEM microscopeJEOL, JapanEM-21001BU
Lead citrate - Ultrostain 2Leica Microsystems GmbH, Austria70 55 30 22
LX-112 resinLadd Research Industries, USA21310
MgCl2 Magnesium chloride hexahydrateSigma, FranceM2393-100g
Mounting medium - Poly(butyl methacrylate-co-methyl methacrylate)Electron Microscopy Sciences-EMS, USA15320
Nadic Methyl Anhydride (NMA)Ladd Research Industries, USA21350
Osmium tetroxide 2%Merck, Germany19172
Propylene oxide (1.2-epoxypropane)Sigma, France82320-250ML
Saline injectable solution 0.9% NaClC.D.M Lavoisier, FranceMA 575 420 6
Scalpel Surgical steel bladeSwann-Morton, England.0508
Sodium tetraborate - BoraxSigma, FranceB-9876
SucroseMerck, Germany84100-1KG
Syringe filter 0.2µmPall Corporation, USA514-4126
Toluidine blueLadd Research Industries, USAN10-70975
Trimmer EM TRIM2Leica Microsystems GmbH, Austria702801
Ultramicrotome Ultracut UCTLeica Microsystems GmbH, Austria656201
Uranyl acetateLadd Research Industries, USA23620

参考文献

  1. Machlus, K. R., Italiano, J. E. The incredible journey: From megakaryocyte development to platelet formation. The Journal of Cell Biology. 201 (6), 785-796 (2013).
  2. Zucker-Franklin, D., Termin, C. S., Cooper, M. C. Structural changes in the megakaryocytes of patients infected with the human immune deficiency virus (HIV-1). American Journal of Pathology. 134 (6), 9 (1989).
  3. Eckly, A., et al. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood. 123 (6), 921-930 (2014).
  4. Scandola, C., et al. Use of electron microscopy to study megakaryocytes. Platelets. , 1-10 (2020).
  5. Behnke, O., Forer, A. From megakaryocytes to platelets: platelet morphogenesis takes place in the bloodstream. European Journal of Haematology. 60, 3-23 (2009).
  6. Eckly, A., et al. Characterization of megakaryocyte development in the native bone marrow environment. Platelets and Megakaryocytes. 788, 175-192 (2012).
  7. Brown, E., Carlin, L. M., Nerlov, C., Lo Celso, C., Poole, A. W. Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels. Life Science Alliance. 1 (2), 201800061 (2018).
  8. Eckly, A., et al. Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. Journal of Thrombosis and Haemostasis. , 15024 (2020).
  9. Cramer, E. M., et al. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood. 89 (7), 2336-2346 (1997).
  10. Heijnen, H. F. G., Debili, N., Vainchencker, W., Breton-Gorius, J., Geuze, H. J. Multivesicular Bodies Are an Intermediate Stage in the Formation of Platelet α-Granules. Blood. 7 (7), 2313-2325 (1998).
  11. Gupta, N., Jadhav, K., Shah, V. Emperipolesis, entosis and cell cannibalism: Demystifying the cloud. Journal of Oral and Maxillofacial Pathology. 21 (1), 92 (2017).
  12. Centurione, L., et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1low mice. Blood. 104 (12), 3573-3580 (2004).
  13. Ellis, S. L., et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood. 118 (6), 1516-1524 (2011).
  14. Bornert, A., et al. Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation. Haematologica. , (2020).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

175

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。