登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

M2样肿瘤相关巨噬细胞(TAM)与肿瘤进展和癌症预后不佳有关。本协议作为在 14 天内可重复区分和分化 THP-1 单细胞状细胞成 M2 样巨噬细胞的详细指南。该模型是研究TAM在肿瘤微环境内的抗炎作用的基础。

摘要

肿瘤相关巨噬细胞 (TAM) 可以根据外部刺激切换其表达和细胞因子特征。这种非凡的可塑性使 TAM 能够适应肿瘤微环境内的持续变化。巨噬细胞可以主要具有抗炎(M1样)或抗炎(M2样)属性,并且可以在这两个主要状态之间不断切换。肿瘤环境中的M2样巨噬细胞与多种癌症的癌症进展和预后不佳有关。诱导THP-1细胞分化和极化的许多不同方法用于研究细胞和细胞间机制以及TAM在肿瘤微环境下的影响。目前,没有使用THP-1细胞系的M2样巨噬细胞偏振的既定模型,由于某些体外刺激,巨噬细胞的表达和细胞因子特征的结果因研究而异。此协议作为详细的指导,将 THP-1 单细胞状细胞区分为 M0 巨噬细胞,并在 14 天内将细胞进一步分化为 M2 样表型。我们使用光显微镜演示了THP-1单细胞状细胞、分化巨噬细胞和偏振M2样巨噬细胞的形态变化。该模型是细胞系模型研究TAM的抗炎作用及其与肿瘤微环境其他细胞群相互作用的基础。

引言

肿瘤相关巨噬细胞(TAM)及其在慢性炎症、癌症发病和肿瘤发育中的作用是最近研究1、2的重要目标。被招募到发育中的肿瘤组织微环境的外周血单核细胞分化成巨噬细胞,可分化成巨噬细胞3的两个主要亚型。经典激活的巨噬体主要代表亲炎M1样表型,而替代激活的M2样亚型主要表现出抗炎特性4。巨噬细胞可以根据细胞代谢在这两种主要表型之间动态切换,中间亚型具有炎症和抗炎特性5。TAM 代表两种表型的异质种群。然而,不同类型癌症的肿瘤促进功能和预后差,尤其与M2样巨噬细胞6、7、8有关。

巨噬细胞的功能特征及其与肿瘤微环境中其他细胞的相互作用,在肿瘤持续发展的不断变化的环境中具有复杂性和挑战性。细胞系可以提供同质细胞群,在培养中具有稳定的生存能力,从而促进演示定义的细胞和细胞间机制的过程。单核细胞样THP-1细胞系是原发性人类单核细胞9的合法模型系统。这种自发不朽的细胞系是从一名患有急性单细胞白血病的一岁婴儿的外周血液中获得的。THP-1细胞的分化和极化已经通过几项研究进行了报告,并以多种不同的方式进行了11、12、13、14。激活,因此,巨噬细胞的两极分化成M1样表型后,一个补偿性的抗炎反弹机制,促进M2样表型通过细胞因子产生的炎症性巨噬细胞,如间脂6(IL-6)或异位15,16。这可能作为一个断裂机制,以减轻细胞激活17后过度的炎症反应。将单核细胞和THP-1单核细胞分化成抗炎M2样表型的过程本身也伴随着必须克服的亲炎刺激。炎症细胞因子反应可由机械应激18引起,如改变介质以重新喂养细胞,或添加化合物来分化THP-1细胞,如磷12-肌酸13-醋酸酯(PMA),并诱导肿瘤坏死因子α(TNF+)、白细胞介质1+(IL-1+)或IL-6 19的产生。这种改变的细胞因子表达配置文件作为对PMA的反应可以影响和防止随后的巨噬细胞偏振20。充足的休息时间,如PMA治疗后报告,允许这些炎症反应减少和促进细胞偏振成一个独特的M2样表型21。

该协议演示了一种在 14 天内将 THP-1 单细胞状细胞分化和偏振成 M2 样巨噬细胞表型的方法。

研究方案

注:此协议中描述的步骤概述见 图 1。购买了人类单细胞样白血病细胞系THP-1。进行了短串联重复分析,以验证 THP-1 细胞线。在无菌条件下执行所有步骤。THP-1单细胞系在悬浮中生长,不附着在细胞培养表面。通过机械应力或PMA的特定治疗,可以通过将单核细胞分化成大噬细胞来诱导粘性

1. THP-1单细胞样细胞的培养和维护

  1. 设置 150s 的定时器。将含有THP-1细胞系(材料表)的冷冻小瓶从液氮中取出,并在清洁水浴(37 °C)中立即解冻。小瓶一放入水浴中,立即启动分时器。松开盖子以释放解冻过程中积聚的压力,但要确保管打开不接触水,以避免污染。解冻细胞的最佳时间段在120-150s之间。继续解冻细胞悬浮,直到小瓶内留下约4毫米大小的冰片:然后,立即进入下一步。
  2. 将细胞悬浮液的液相转移到含有 9 mL 暖 (37 °C) 生长介质的 15 mL 管(材料表)。然后,将 1 mL 的暖中细胞悬架转移到 THP-1 小瓶中,然后返回到 15 mL 管中,以融化剩余的冰片并冲洗小瓶,以确保不留下任何细胞。
  3. 通过上下管道与 1000 μL 移液器轻轻混合悬架。取出一个小样本(约 10 μL),以计算细胞的生存能力(使用尝试蓝排除),而它们旋转。在 37 °C 下以 200 x g 旋转热电池悬架 7 分钟。
  4. 完全取出超高密度,并重新使用一定体积的温暖生长介质,实现 5 x 105/mL的细胞密度。轻轻混合悬架,将22mL的体积转移到T-75细胞培养瓶(材料表)。将烧瓶直立存放在 37 °C 的孵化器中,二氧化碳 (CO2)浓度为 5%。每 3-4 天交换一次增长介质。

2. THP-1细胞的播种和M0巨噬细胞的分化

  1. 将含有生长介质的细胞以各自的细胞密度准备成3×105/mL/井的种子细胞,放入24井细胞培养板(材料表)。轻轻混合介质,准备26mL的铝块,每个放入一个50mL管。使用每个 26 mL 的 aliquot 将细胞播种到各自的板中。
  2. 将含细胞介质的 1 mL 转移到 24 井板的每个井中。通过在传输之间上下管道轻轻混合媒体。
  3. 准备 PMA 的库存溶液(在 100 μL 的二甲基硫化物 (DMSO) 中溶液溶液 1 毫克 = DMSO 中 PMA 的 ±16 mM 溶液),并在细胞处理前用冷磷酸盐缓冲盐水 (PBS) 稀释到 10 ng/μL 的最终工作浓度(材料表)。将溶液放在冰上并立即使用。不要重新冻结。每口井加入100 ng的PMA。让每个细胞板坐在孵化器中,无需任何进一步治疗72小时。
  4. 72 小时后,取出生长介质,代之以 1 mL 的新鲜生长介质。不要用移液器提示触摸井底。让细胞在孵化器中再休息96小时。
  5. 96小时后,重复步骤 2.4(介质更改),让细胞再休息 24 小时。
    注:M0巨噬细胞现已准备用于实验(图2)。在将细胞作为进一步实验的一部分之前,请考虑仅使用 RPMI (材料表) 进行介质更改,因为生长介质补充剂可能会对添加用于细胞治疗的试剂造成干扰。如果需要 M2 样巨噬细胞,则继续执行第 3 节。

3. M0 巨噬细胞极化成 M2 样巨噬细胞

  1. 准备 IL-4 和 IL-13 的库存溶液(在 200 μl 无核酸水中溶解 20 μg 的 IL-4 或 IL-13),并在细胞治疗前立即将其稀释至 PBS 的 2 ng/μL 最终工作浓度。将溶液放在冰上并立即使用。不要重新冻结。
  2. 取出生长介质,代之以 1 mL 的新鲜生长介质。每口井加入20 ng的间柳金4(IL-4)和20 ng的间柳金13(IL-13)。让细胞在孵化器中休息48小时。
  3. 48 小时后,重复步骤 3.2。让细胞在孵化器中再休息48小时。
  4. 取出生长介质,代之以 1 mL 的新鲜生长介质。让细胞在孵化器中休息48小时。
    注:M2型巨噬细胞现已准备用于实验(图2)。在将细胞作为进一步实验的一部分之前,考虑仅使用RPMI(材料表)进行介质变化,因为生长介质补充剂可能会引起干扰。

4. 用于流细胞学的分离和收获巨噬细胞

注:使用结合冷冲击和细胞刮的机械方法,从板中分离和收获极化巨噬细胞,用于流细胞学。

  1. 取出温暖的细胞介质,代之以冰冷的PBS(不含钙和镁)和5%的胎儿牛血清(FBS),每口井1ml。紧接着,将细胞板放在冰上45分钟。在去除温暖的细胞介质之前,不要将细胞板放在冰上,因为这将显著降低细胞的生存能力。只有在用冰冷的PBS/5%FBS混合物诱导冷冲击后,才将细胞留在冰上。
  2. 冰上45分钟后,用迷你细胞刮刀刮掉细胞(材料表)。轻轻地将冷 PBS/5% FBS 中的分离巨噬细胞转移到 15 mL 管中。将管子随时放在冰上,直到细胞被弄脏。
    注:池中八口细胞,以达到足够的细胞计数进行染色。

结果

以M2样巨噬细胞为特征,使用分化标记簇(CD)CD14、CD11b、CD80(M1样标记)和CD206(M2样标记)的流细胞学验证M2极化。流细胞测量染色是根据制造商的说明进行的。巨噬细胞用PBS/5%FBS清洗,并孵育与Fcé受体块,以避免未特定的结合。然后,细胞被HITCH结合的小鼠抗人类CD14和CD80抗体染色,与PE结合的小鼠抗人类CD11b抗体,并与PE-串联结合小鼠抗人类CD206抗体和同型匹配IgG(材料表)在4°C?...

讨论

此关于在 14 天内区分和偏振 THP-1 单细胞状细胞的协议提供了一种方法,通过在步骤之间有足够休息时间的细胞进行长期治疗孵化,获得具有不同 M2 样表型的巨噬细胞。

某些步骤对此协议至关重要。THP-1单核细胞的加倍时间约为26小时。细胞可以以 9 x 105/mL的细胞密度进行分裂,每次分裂时应以 3 x 105/mL 的密度播种。分裂可以在不去除所有使用过的(旧)细胞?...

披露声明

作者声明没有潜在的利益冲突。

致谢

路易斯维尔大学价格外科研究所得到约翰·普莱斯和芭芭拉·普劳顿·阿特伍德价格信托基金的财政支持。资金来源在研究的设计和进行以及数据的收集、管理、分析和解释方面没有作用。

材料

NameCompanyCatalog NumberComments
0.4% trypan blueVWR, Radnor, USA152-5061
1.5 mL microcentrifuge tubeUSA Scientific, Ocala, USA1615-5510
10 mL serological pipetVWR, Radnor, USA 89130-898
1000 μL TipOne pipet tipsUSA Scientific, Ocala, USA1111-2821
15 mL  Centrifuge tubeVWR, Radnor, USA89039-664
20 μL TipOne pipet tipsUSA Scientific, Ocala, USA1120-1810
200 μL TipOne pipet tipsUSA Scientific, Ocala, USA1120-8810
25 mL serological pipetVWR, Radnor, USA 89130-900
5 mL serological pipetVWR, Radnor, USA 89130-896
50 mL Centrifuge tubeVWR, Radnor, USA89039-662
Accutase solution 500 mLSigma, St. Louis, USAA6964
Antibiotic Antimycotic Solution (100x), stabilizedSigma, St. Louis, USAA5955-100 mLwith 10,000 units penicillin, 10 mg of streptomycin and 25 μg of amphotericin B per mL, sterile-filtered, BioReagent, suitable for cell culture
Binder CO2 IncubatorVWR, Radnor, USAC170-ULE3
CytoOne T-75cm flask with filter capUSA Scientific, Ocala, USACC7682-4875
Dulbecco’s Phosphate Buffered Saline (PBS)Sigma, St. Louis, USAD8537-500 mLPBS without calcium chloride and magnesium chloride should be used, since both can alter macrophage polarization
Eppendorf Centrifuge 5804 R (refrigerated)Eppendorf, Enfield, USA-
Ethyl alcohol (70%)--
FACSCalibur flow cytometerBD Biosciences, San Diego, USA-The flow cytometer operates with CellQuest software (BD Biosciences)
Falcon 24-well plateVWR, Radnor, USA353504
Fetal Bovine Serum (FBS)ATCC, Manassas, USA30-2020
FITC Mouse Anti-Human CD14BD Biosciences, San Diego, USA555397Flow cytometry, myeloid cell marker (100 tests)
FITC Mouse Anti-Human CD80BD Pharmingen, San Diego, USA557226Flow cytometry, M1 marker (100 tests)
FITC Mouse IgG1 κ Isotype ControlBD Pharmingen, San Diego, USA555748Flow cytometry, isotype control for CD80 (100 tests)
FITC Mouse IgG2a, κ Isotype ControlBD Biosciences, San Diego, USA553456Flow cytometry, isotype control for CD14 (100 tests)
Human BD Fc BlockBD Biosciences, San Diego, USA564220Flow cytometry, Fc block (0.25 mg)
Human interleukin 13 (IL-13)R&D, Minneapolis, USAIL-771-10 μg
Human interleukin 4 (IL-4)R&D, Minneapolis, USASRP3093-20 μg
Labconco Biosafety Cabinet (Delta Series 36212/36213)Labconco, Kansas City, USA-
L-Glutamine Solution, 200 mMATCC, Manassas, USA30-2214
Lipopolysaccharide (LPS) from E. coli 0111:B4Sigma, St. Louis, USAL2630-100 mg
Mini Cell ScrapersBiotium, Fremont, USA22003
Neubauer hemocytometerFisher Scientific, Waltham, USA02-671-5
Nikon Eclipse inverted microscope TS100Nikon, Melville, USA-
Nuclease-free waterInvitrogen, Carlsbad, USAAM9937
Olympus Light Microscope RH-2Microscope Central, Feasterville, USA40888
P10 variable pipet- GilsonVWR, Radnor, USA76180-014
P1000 variable pipet-GilsonVWR, Radnor, USA76177-990
P200 variable pipet- GilsonVWR, Radnor, USA76177-988
PE Mouse Anti-Human CD11bBD Biosciences, San Diego, USA555388Flow cytometry, myeloid cell marker (100 tests)
PE Mouse IgG1, κ Isotype ControlBD Biosciences, San Diego, USA555749Flow cytometry, isotype control for CD11b (100 tests)
PE-Cy 5 Mouse Anti-Human CD206BD Pharmingen, San Diego, USA551136Flow cytometry, M2 marker (100 tests)
PE-Cy 5 Mouse IgG1 κ Isotype ControlBD Pharmingen, San Diego, USA555750Flow cytometry, isotype control for CD206 (100 tests)
Phorbol 12-myristate 13-acetate (PMA)Sigma, St. Louis, USAP8139
Powerpette Plus pipettorVWR, Radnor, USA75856-448
Precision Water bath (model 183)Precision Scientific, Chicago, USA66551
RPMI-1640 MediumATCC, Manassas, USA30-2001
THP-1 cell line, American Type Culture Collection (ATCC)ATCC, Manassas, USATIB-202

参考文献

  1. Zhang, R., et al. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death and Disease. 10 (4), 273 (2019).
  2. Wang, J., Li, D., Cang, H., Guo, B. Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Medicine. 8 (10), 4709-4721 (2019).
  3. Soncin, I., et al. The tumor microenvironment creates a niche for the self-renewal of tumor-promoting macrophages in colon adenoma. Nature Communications. 9 (1), 582 (2018).
  4. Mosser, D. M., Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 8 (12), 958-969 (2008).
  5. Mazzone, M., Menga, A., Castegna, A. Metabolism and TAM functions-it takes two to tango. Federation of European Biochemical Societies Journal. 285 (4), 700-716 (2018).
  6. Eum, H. H., et al. Tumor-promoting macrophages prevail in malignant ascites of advanced gastric cancer. Experimental and Molecular Medicine. 52 (12), 1976-1988 (2020).
  7. Qian, B. Z., Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell. 141 (1), 39-51 (2010).
  8. Scheurlen, K. M., Billeter, A. T., O'Brien, S. J., Galandiuk, S. Metabolic dysfunction and early-onset colorectal cancer - how macrophages build the bridge. Cancer Medicine. 9 (18), 6679-6693 (2020).
  9. Bosshart, H., Heinzelmann, M. THP-1 cells as a model for human monocytes. Annals of Translational Medicine. 4 (21), 438 (2016).
  10. . The American Type Culture Collection (ATCC) Available from: https://www.atcc.org/products/all/TIB-202.aspx#generalinformation (2021)
  11. Baxter, E. W., et al. Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNgamma+LPS), M(IL-4), and M(IL-10) phenotypes. Journal of Immunological Methods. 478, 112721 (2020).
  12. Genin, M., Clement, F., Fattaccioli, A., Raes, M., Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 15, 577 (2015).
  13. Starr, T., Bauler, T. J., Malik-Kale, P., Steele-Mortimer, O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS One. 13 (3), 0193601 (2018).
  14. Lund, M. E., To, J., O'Brien, B. A., Donnelly, S. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods. 430, 64-70 (2016).
  15. Yin, Z., et al. IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. Journal of Cellular Biochemistry. 119 (11), 9419-9432 (2018).
  16. O'Neill, L. A. J., Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nature Reviews Immunology. 19 (5), 273-281 (2019).
  17. Luig, M., et al. Inflammation-induced IL-6 functions as a natural brake on macrophages and limits gn. Journal of the American Society of Nephrology. 26 (7), 1597-1607 (2015).
  18. Maruyama, K., Nemoto, E., Yamada, S. Mechanical regulation of macrophage function - cyclic tensile force inhibits NLRP3 inflammasome-dependent IL-1beta secretion in murine macrophages. Inflammation and Regeneration. 39, 3 (2019).
  19. Gatto, F., et al. PMA-Induced THP-1 Macrophage Differentiation is Not Impaired by Citrate-Coated Platinum Nanoparticles. Nanomaterials (Basel). 7 (10), (2017).
  20. Maess, M. B., Wittig, B., Cignarella, A., Lorkowski, S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. Journal of Immunological Methods. 402 (1-2), 76-81 (2014).
  21. Daigneault, M., Preston, J. A., Marriott, H. M., Whyte, M. K., Dockrell, D. H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 5 (1), 8668 (2010).
  22. Raggi, F., et al. Regulation of human macrophage M1-M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Frontiers in Immunology. 8, 11097 (2017).
  23. Neutelings, T., Lambert, C. A., Nusgens, B. V., Colige, A. C. Effects of mild cold shock (25 degrees C) followed by warming up at 37 degrees C on the cellular stress response. PLoS One. 8 (7), 69687 (2013).
  24. Kurashina, Y., et al. Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves. Communications Biology. 2, 393 (2019).
  25. Chen, S., So, E. C., Strome, S. E., Zhang, X. Impact of Detachment Methods on M2 Macrophage Phenotype and Function. Journal of Immunological Methods. 426, 56-61 (2015).
  26. Bailey, J. D., et al. Isolation and culture of murine bone marrow-derived macrophages for nitric oxide and redox biology. Nitric Oxide. 100-101, 17-29 (2020).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

174

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。