JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

该协议描述了一种将痰液解离为单细胞悬浮液的有效方法,以及随后在标准流式细胞术平台上对细胞亚群的表征。

摘要

痰液广泛用于研究细胞含量和其他微环境特征,以了解肺部的健康,传统上使用基于细胞学的方法进行分析。它的效用有限,因为阅读幻灯片非常耗时,需要高度专业化的人员。此外,广泛的碎片和过多的鳞状上皮细胞(SEC)或脸颊细胞的存在往往使样本不足以诊断。相比之式细胞术允许对细胞群进行高通量表型分析,同时排除碎片和 SEC 。

这里介绍的方案描述了一种将痰液解离成单细胞悬浮液,抗体染色和固定细胞群以及在流式细胞术平台上获取样品的有效方法。这里介绍了一种门控策略,描述了排除碎片,死细胞(包括SEC)和细胞二倍体。此外,这项工作还解释了如何基于分化簇(CD)45阳性和阴性群体分析活的单个痰细胞,以表征造血和上皮谱系亚群。通过识别肺部特异性巨噬细胞作为样本来自肺部而不是唾液的证据,还可以提供质量控制措施。最后,已经证明该方法可以通过提供在三个流式细胞仪上分析的同一患者的痰液图谱应用于不同的细胞术平台;Navios EX,LSR II和Lyric。此外,可以修改该协议以包括感兴趣的其他细胞标记物。这里提出了一种在流式细胞术平台上分析整个痰液样本的方法,该方法使痰液适合于开发肺病的高通量诊断。

引言

流式细胞仪硬件和软件的技术进步使得同时识别许多不同的细胞群成为可能1234。例如,流式细胞仪在造血细胞研究中的应用使人们对免疫系统2和造血系统的细胞层次结构5有了更好的了解,并区分了多种不同血癌的诊断方法678。虽然大多数痰细胞起源于造血91011,但流式细胞术尚未广泛应用于用于诊断目的的痰液分析。然而,一些研究表明,评估痰液(最重要的细胞亚群)中的免疫细胞群可能对诊断和/或监测哮喘和慢性阻塞性肺病(COPD)等疾病有很大帮助12131415。此外,可用于流式细胞术的上皮特异性标志物的存在允许询问痰液中以下最重要的细胞亚群,肺上皮细胞。

除了能够分析不同组织起源的许多不同细胞群之外,流式细胞仪还可以在相对较短的时间内评估大量细胞。相比之下,基于载玻片的细胞学分析类型通常需要高度专业的人员和/或设备。这些分析可能是劳动密集型的,这导致只有一部分痰液样本被分析16

三个关键问题限制了痰液在流式细胞术中的广泛使用。第一个问题涉及痰液的收集。痰液通过喘息咳嗽收集,将粘液从肺部排出到口腔中,然后吐入收集杯中。由于粘液穿过口腔,因此SEC污染的可能性很高。这种污染使标本分析复杂化,但如本研究所示,该问题在流式细胞仪平台上很容易纠正。

不是每个人都能自发产生痰液;因此,已经开发了几种设备来帮助以非侵入性方式收集痰液17。雾化器就是这样一种装置,已被证明可以产生可靠的痰液样本181920。虽然雾化器是一种非常有效的非侵入性收集痰液的方法,但其使用仍然需要在有专业人员的医疗机构进行设置21。相比之下,手持设备,如肺笛222324 和无伴奏合唱1625 ,可以在家中使用,因为它们非常人性化。这些辅助设备既安全又经济高效。

对于我们来说,阿卡贝拉的效果一直比肺笛16更好,因此,阿卡贝拉装置已被选择用于痰液收集。决定使用3天的收集样本,因为使用痰液的主要目的是开发肺癌检测测试16。已经表明,与1天或2天的样本相比,3天的样本增加了肺癌检测的可能性262728。然而,对于不同的目的,其他的痰液收集方法可能更可取。如果使用与此处描述的方法不同的痰液收集方法,建议仔细滴定用于流式细胞术分析的每种抗体或染料;关于不同的痰液收集方法如何影响流式细胞术的靶向蛋白质的数据很少。

抑制使用痰液进行诊断的热情的第二个问题是细胞数量,主要与流式细胞术有关。问题是收集足够的活细胞进行可靠的分析。两项研究表明,在辅助装置的帮助下,通过非侵入性方法收集的痰液样本含有足够的活细胞,可用于临床诊断或研究研究1624。然而,这两项研究都没有解决流式细胞术的细胞数量问题。

对于构成该方案基础的研究,根据每个研究地点批准的机构指南,从患肺癌高风险的参与者中收集痰液样本。高危参与者被定义为55-75岁之间,吸烟30包年,过去15年内没有戒烟。向患者展示了如何根据制造商的说明使用阿卡贝拉装置29 ,并在家中连续三天收集痰液。样品保存在冰箱中,直到最后一次收集。在最后一个收集日,样品与冷冻冷藏袋一起连夜运往实验室。样品在收到当天被加工成单细胞悬浮液。使用这种痰液收集方法,可以获得足够的活细胞,以进行可靠的流式细胞术分析。

最后,与之前的细胞数问题相关的是如何将痰细胞从其粘液环境中释放出来的问题。如何保持细胞存活并产生不会堵塞流式细胞仪的单细胞悬浮液?基于Pizzichini等人30 和Miller等人的初步工作,该协议描述了一种简单可靠的方法,用于将痰液加工成适合流式细胞术分析的单细胞悬浮液。该方法在流式细胞术中使用了完善的指南323334 来开发有效的抗体标记策略,以识别痰液中的造血细胞和上皮细胞,并提供仪器设置,质量控制措施和分析指南,在流式细胞术平台上标准化痰液分析。

研究方案

痰液处理的所有步骤都在带有适当个人防护设备的生物安全柜中进行。

1. 开始痰液解离前的试剂制备

  1. 在冰上解冻1%多聚甲醛(PFA),每个样品25 mL,并保持冷藏直至使用。
    注意:PFA通过吸入和皮肤接触而有毒。根据制造商的说明准备固定剂,并在-20°C下冷冻在25 mL等分试样中直至使用。
  2. 近似样品的重量并解冻足够的0.1%二硫磷脂醇(DTT)用于步骤2.2,并将其降至37°C。 (DTT等分试样应在使用前储存在-20°C。
  3. 携带足够的0.5%N-乙酰基-L-半胱氨酸(NAC)至37°C进行步骤2.2。(NAC应每周新鲜一次,并在使用前储存在4°C。

2. 痰液解离

  1. 称量痰液样本以确定解离试剂的体积。
    注:如果初始重量为≤3克,则认为样品较小;如果>3克但≤8克,则认为样品为中等;如果>8但≤16克,则样品量大;如果样品重量>16克,则样品量大。小,中,大和超大的适应症将在整个协议中使用。解离和标记所需的试剂量根据痰液样本的大小而不同。
  2. 将小样品转移到干净的50 mL锥形管中,将中等样品转移到干净的250 mL塑料一次性瓶中,或将大样品和超大样品转移到干净的500 mL塑料一次性瓶中。加入 1 mL/g 样品重量为 0.5% NAC 和 4 mL/g 样品重量为 0.1% DTT。
  3. 以最大速度(15秒)涡旋,然后在室温(以最大速度)下摇摆15分钟。
  4. 用四体积的Hank's平衡盐溶液(HBSS)稀释样品(基于样品+试剂的总体积)以中和NAC和DTT;以最大速度快速涡旋,以最大速度在室温下摇摆5分钟。
  5. 通过100μm尼龙网状细胞过滤器过滤细胞悬浮液到一个或多个50 mL锥形离心管中,以产生单细胞悬浮液。
  6. 在4°C下以800× g 离心细胞10分钟。 吸出上清液,将所有微丸混合在一个15 mL锥形管中,然后使用相同的条件用HBSS洗涤微丸。
  7. 将细胞沉淀重悬于由痰液样品的初始重量确定的缓冲液体积中。
    注:将小样品重悬于250μL HBSS中。将培养基样品重悬于760μL HBSS中。将大样品和超大样品重悬于1460 μL HBSS中。
  8. 使用台盼蓝取细胞悬浮液的等分试样进行活/死细胞计数。
    注意:对于小样品,使用5μL。对于中等、大或超大样品,使用10μL,用HBSS以1:10稀释。
    1. 将10μL痰液稀释液与30μL0.4%台盼蓝混合,以达到1:40的最终样品稀释度。装入血细胞计数器的计数室进行细胞计数。
      注意:如果细胞数太低或太高而无法实现准确的计数,则可能需要调整最终稀释度。强烈建议您咨询Guiot等人20 ,以正确区分痰细胞与SEC和碎片。这对于准确的细胞计数至关重要。
  9. 从超大样品中,从总数中取出50×10 6 个细胞,并加入到具有足够添加的HBSS的新管中,以产生1700μL的总体积。
    注意:将此视为协议其余部分的大样本。剩余的样品可以丢弃或用于其他目的。

3. 抗体和活力染料染色

  1. 抗体和染色染料的选择
    注: 表1 显示了该方案中使用的抗体和活力染料以及它们所鉴定的细胞群。
    1. 标记含有痰细胞的管子(参见 表2 的标记)。
    2. 使用5 mL流式细胞术管(与所用流式细胞仪兼容)用于具有未染色细胞的样品管和具有同种型对照的试管。使用15 mL锥形管进行血液和上皮管样品。
      注意:这些样品将在抗体染色和固定后转移到流式细胞术管中。
  2. 标记补偿管(表3)。
    注:使用与所用流式细胞仪兼容的 5 mL 流式细胞术管。
  3. 将HBSS,抗体和/或染料的量分别添加到每个痰细胞管和补偿管中,如 表2表3所示。
    注意:在添加细胞或补偿珠之前,将缓冲液(HBBS),抗体和染料添加到所有试管中,以确保所有试管的染色时间一致。
  4. 表2 中列出的痰细胞体积的量加入测定管中。
  5. 将补偿珠添加到补偿管中,如 表3所示。
  6. 将所有试管(测定和补偿管)在冰上孵育,避光,35分钟。然后,用冰冷的HBSS填充管子,并在4°C下以800× g离心10分钟。
  7. 对于补偿管,吸出上清液尽可能靠近颗粒,然后轻拂颗粒以松动。
  8. 向补偿管中加入0.5 mL冷HBSS,将其储存在4°C的冰上,并保护它们免受光照,直到需要流式细胞术分析。
  9. 离心后(抗体染色部分的步骤3.6)从未染色的同种型,血液和上皮管中吸出上清液,并通过轻拂管子松开沉淀。

4. 用1%多聚甲醛(PFA)固定

  1. 将冷的1%PFA(现在应该解冻)添加到未染色的同种型,血液和上皮管中;2 mL 至未染色和同种型试管,10 mL 至血液和上皮管。
  2. 将管子在冰上孵育,避光1小时。30分钟后以最大速度快速涡旋。
  3. 用冰冷的哈佛商学院填充管子。然后,在4°C下离心管10分钟,以1600× g
  4. 在不干扰细胞沉淀的情况下吸出尽可能多的上清液,并用手指轻拂管以松动细胞。
  5. 将200μL冷HBSS加入未染色的同种型管中。
  6. 根据总细胞计数计算用于血液和上皮管重悬的HBSS体积。
    注意:重悬体积= 0.15 x [总细胞计数(痰液解离步骤8)/ 106]。使用50 x 106 作为超大样品的细胞计数。
  7. 储存所有样品和补偿管,在4°C下保护冰上避光,直到进行流式细胞术分析。
    注意:此协议未经测试存储超过 24 小时。

5. 流式细胞仪上的数据采集

  1. 对正在使用的流式细胞仪应用适当的启动程序。
    注意:该协议的这一部分假设操作流式细胞仪的人员接受过使用可用仪器的培训,特别是关于日常程序,包括检查光学和流体系统的稳定性,标准化光散射和荧光强度的技术,以及计算和应用正确的补偿矩阵。
  2. 使用美国国家标准与技术研究院 (NIST) 磁珠的混合物,确保将正向散射和侧向散射电压设置为将 NIST 磁珠放置在跨整个图中,而不会将磁珠放置在离轴太近的位置。
    注:此步骤对于确保通过采集后分析门控消除小于5 μm的碎屑至关重要。根据所使用的流式细胞仪,请注意,最小的磁珠不会被阈值(使用LSR II或Lyric时)或高鉴别器(使用Navios EX流式细胞仪)排除。对于Navios EX,正向和侧向散射的增益为2,正向散射的电压为236,侧向散射的电压为250。对于LSR II,使用了165的正向散射电压和190的侧散射电压。
  3. 将流速设置为中等 (LSR II) 或高 (Navios EX)。
    注意:大多数仪器的中高流速可用于获取痰管。重要的是要注意,使用太慢的流速或太稀的样品可能导致细胞沉降,从而导致涡旋增加,这是不希望的。因此,坚持步骤4.6中计算的重悬体积应导致可以快速获得但不堵塞机器的细胞密度。
  4. 调整用于散射和荧光参数的每个参数的电压,以将细胞群放置在刻度上。使用带有门控策略的数字作为如何相应地调整电压的指导。
    注意:确保在采集之前在参数选择窗口中选择了所需的所有参数,否则不会获取数据。
  5. 首先获取未染色的痰液样本的数据,然后采集同种型染色的样本,然后是血管和上皮管。
    注意:如果细胞悬浮液浓度过高,无法使流式细胞仪运行样品而不会堵塞,则可以用HBSS进一步稀释样品。

结果

该协议是在考虑临床实验室环境的情况下制定的。在协议开发过程中,重点是简单性,效率和可重复性。研究发现,处理痰液中最耗时的步骤是计数细胞。因此,该协议的设置方式使得痰液处理和细胞标记可以独立于细胞计数进行而不会浪费时间。然后,可以在抗体标记孵育期间获得准确的细胞计数,这对于适当稀释样品以进行无障碍运行仍然是必需的。

该协议使用痰液重?...

讨论

痰液的细胞含量包括种类繁多的宽范围细胞,往往伴有大量碎片37。此外,痰液分析需要质量控制,以确认样本是从肺部而不是口腔收集的38。因此,通过流式细胞术分析痰液并不像血液那样简单,例如,血液释放出更清洁和均匀的细胞悬浮液。该协议已经解决了所有这些问题:提供使用特定尺寸的微球的仪器设置,以确保可以检测到最小和最大的细胞群,门控?...

披露声明

所有作者都是bioAffinity Technologies的过去或现在的员工。

致谢

我们要感谢大卫·罗德里格斯(David Rodriguez)对人物准备工作的协助。痰液样本在UT Health San Antonio流式细胞术共享资源设施的BD LSR II上运行,由UT Health,NIH-NCI P30 CA054174-20(UT Health的CTRC)和UL1 TR001120(CTSA授权)提供支持。

材料

NameCompanyCatalog NumberComments
1% Paraformaldehyde Flow-FixPolysciences25037
100 µM nylon cell strainers, Falcon #352360Fisher Scientific08-771-19
3 M NaOHEMDSX0593-1
50 mL conical falcon tubeFisher Scientific14-432-22
Alexa488 anti-human CD19BioLegend302219
Alexa488 anti-human CD3BioLegend300415
Alexa488 anti-human cytokeratinBioLegend628608
Alexa488 PanCK, CD3, and CD19 IsotypeBioLegend400129
BV510 anti-human CD45BioLegend304036
CD66b FITC isotypeBD Biosciences555748
CompBead Plus Compensation BeadsBD Biosciences560497
Corning Polystyrene dispoable sterile bottle 250 mLFisher Scientific09-761-4
Corning Polystyrene dispoable sterile bottle 500 mLFisher Scientific09-761-10
CS&T beadsBD Biosciences655051
DTTFisher ScientificBP172-5
FITC anti-human CD66bGeneTexGTX75907
Fixable Viability StainBD Biosciences564406
FlowCheckBeckman CoulterA69183
FlowSetBeckman CoulterA69184
HBSSFisher Scientific14-175-095
NACSigma-AldrichA9165
NIST Beads, 05 μMPolysciences64080
NIST Beads, 20 μMPolysciences64160
NIST Beads, 30 μMPolysciences64170
PE anti-human CD45BioLegend304039
PE-CF594 anti-human EpCAMBD Biosciences565399
PE-CF594 CD206/EpCAM IsotypeBD Biosciences562292
PE-CR594 anti-human CD206BD Biosciences564063
Sodium citrate dihydrateEMDSX0445-1
Trypan Blue solution, 0.4%Fisher Scientific15250061

参考文献

  1. Lugli, E., Roederer, M., Cossarizza, A. Data analysis in flow cytometry: the future just started. Cytometry. Part A: The Journal of the International Society for Analytical Cytology. 77 (7), 705-713 (2010).
  2. Perfetto, S. P., Chattopadhyay, P. K., Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nature Reviews. Immunology. 4 (8), 648-655 (2004).
  3. Chattopadhyay, P. K., Roederer, M. Cytometry: today's technology and tomorrow's horizons. Methods. 57 (3), 251-258 (2012).
  4. Robinson, J. P., Roederer, M. History of science. Flow cytometry strikes gold. Science. 350 (6262), 739-740 (2015).
  5. Orfao, A., et al. Immunophenotypic dissection of normal hematopoiesis. Journal of Immunological Methods. 475, 112684 (2019).
  6. Craig, F. E., Foon, K. A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 111 (8), 3941-3967 (2008).
  7. Bento, L. C., et al. The use of flow cytometry in myelodysplastic syndromes: A review. Frontiers in Oncology. 7, 270 (2017).
  8. Della Porta, M. G., Picone, C. Diagnostic utility of flow cytometry in myelodysplastic syndromes. Mediterranean Journal of Hematology and Infectious Diseases. 9 (1), 2017017 (2017).
  9. Belda, J., et al. Induced sputum cell counts in healthy adults. American Journal of Respiratory and Critical Care Medicine. 161 (2), 475-478 (2000).
  10. Spanevello, A., et al. Induced sputum cellularity. Reference values and distribution in normal volunteers. American Journal of Respiratory and Critical Care Medicine. 162 (3), 1172-1174 (2000).
  11. Thomas, R. A., et al. The influence of age on induced sputum differential cell counts in normal subjects. Chest. 126 (6), 1811-1814 (2004).
  12. Hastie, A. T., et al. Mixed sputum granulocyte longitudinal impact on lung function in the severe asthma research program. American Journal of Respiratory and Critical Care Medicine. 203 (7), 882-892 (2021).
  13. Hastie, A. T., et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. The Lancet. Respiratory Medicine. 5 (12), 956-967 (2017).
  14. Kim, J., et al. Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. The Journal of Allergy and Clinical Immunology. 143 (5), 1769-1782 (2019).
  15. Bai, Y., Zhou, Q., Fang, Q., Song, L., Chen, K. Inflammatory cytokines and T-Lymphocyte subsets in serum and sputum in patients with bronchial asthma and chronic obstructive pulmonary disease. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 25, 2206-2210 (2019).
  16. Patriquin, L., et al. Early detection of lung cancer with meso tetra (4-Carboxyphenyl) porphyrin-labeled sputum. Journal of Thoracic Oncology. 10 (9), 1311-1318 (2015).
  17. Hristara-Papadopoulou, A., Tsanakas, J., Diomou, G., Papadopoulou, O. Current devices of respiratory physiotherapy. Hippokratia. 12 (4), 211-220 (2008).
  18. Fahy, J. V., Liu, J., Wong, H., Boushey, H. A. Cellular and biochemical analysis of induced sputum from asthmatic and from healthy subjects. The American Review of Respiratory Disease. 147 (5), 1126-1131 (1993).
  19. Alexis, N., Soukup, J., Ghio, A., Becker, S. Sputum phagocytes from healthy individuals are functional and activated: a flow cytometric comparison with cells in bronchoalveolar lavage and peripheral blood. Clinical Immunology. 97 (1), 21-32 (2000).
  20. Guiot, J., et al. Methodology for sputum induction and laboratory processing. Journal of Visualized Experiments: JoVE. (130), e56612 (2017).
  21. Paggiaro, P. L., et al. Sputum induction. The European Respiratory Journal. Supplement. 37, 3-8 (2002).
  22. Anjuman, N., Li, N., Guarnera, M., Stass, S. A., Jiang, F. Evaluation of lung flute in sputum samples for molecular analysis of lung cancer. Clinical and Translational Medicine. 2, 15 (2013).
  23. Sethi, S., Yin, J., Anderson, P. K. Lung flute improves symptoms and health status in COPD with chronic bronchitis: A 26 week randomized controlled trial. Clinical and Translational Medicine. 3, 29 (2014).
  24. Su, J., et al. Analysis of lung flute-collected sputum for lung cancer diagnosis. Biomarker Insights. 10, 55-61 (2015).
  25. Naraparaju, S., Vaishali, K., Venkatesan, P., Acharya, V. A comparison of the Acapella and a threshold inspiratory muscle trainer for sputum clearance in bronchiectasis-A pilot study. Physiotherapy Theory and Practice. 26 (6), 353-357 (2010).
  26. Hinson, K. F., Kuper, S. W. The diagnosis of lung cancer by examination of sputum. Thorax. 18, 350-353 (1963).
  27. Johnston, W. W., Bossen, E. H. Ten years of respiratory cytopathology at Duke University Medical Center. I. The cytopathologic diagnosis of lung cancer during the years 1970 to 1974, noting the significance of specimen number and type. Acta Cytologica. 25 (2), 103-107 (1981).
  28. Ng, A. B., Horak, G. C. Factors significant in the diagnostic accuracy of lung cytology in bronchial washing and sputum samples. II. Sputum samples. Acta Cytologica. 27 (4), 397-402 (1983).
  29. . Smiths Medical Videos Available from: https://videos.smiths-medical.com/search?q=acapella&page=1 (2021)
  30. Pizzichini, E., et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. American Journal of Respiratory and Critical Care Medicine. 154 (2), 308-317 (1996).
  31. Miller, H. R., Phipps, P. H., Rossier, E. Reduction of nonspecific fluorescence in respiratory specimens by pretreatment with N-acetylcysteine. Journal of Clinical Microbiology. 24 (3), 470-471 (1986).
  32. Baumgarth, N., Roederer, M. A practical approach to multicolor flow cytometry for immunophenotyping. Journal of Immunological Methods. 243 (1-2), 77-97 (2000).
  33. Maecker, H. T., Trotter, J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry. Part A: The Journal of the International Society for Analytical Cytology. 69 (9), 1037-1042 (2006).
  34. Cossarizza, A., et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology. 49 (10), 1457 (2019).
  35. Stewart, C. C., Stewart, S. J. Titering antibodies. Current Protocols in Cytometry. , (2001).
  36. Kasai, Y., et al. biopsy of human oral mucosal epithelial cells as a quality control of the cell source for fabrication of transplantable epithelial cell sheets for regenerative medicine. Regenerative Therapy. 4, 71-77 (2016).
  37. Kini, S. R. . Color Atlas of Pulmonary Cytopathology. , (2002).
  38. Papanicolaou Society of Cytopathology Task Force on Standards of Practice. Guidelines of the Papanicolaou Society of Cytopathology for the examination of cytologic specimens obtained from the respiratory tract. Diagnostic Cytopathology. 21 (1), 61-69 (1999).
  39. Holmes, K. L., et al. International Society for the Advancement of Cytometry cell sorter biosafety standards. Cytometry. Part A: The Journal of the International Society for Analytical Cytology. 85 (5), 434-453 (2014).
  40. Datta, S., Shah, L., Gilman, R. H., Evans, C. A. Comparison of sputum collection methods for tuberculosis diagnosis: a systematic review and pairwise and network meta-analysis. The Lancet Global Health. 5 (8), 760-771 (2017).
  41. Armstrong-Hough, M., et al. "Something so hard": a mixed-methods study of home sputum collection for tuberculosis contact investigation in Uganda. The International Journal of Tuberculosis and Lung Disease: The Official Journal of the International Union Against Tuberculosis and Lung Disease. 22 (10), 1152-1159 (2018).
  42. Freeman, C. M., et al. Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). Journal of Translational Medicine. 13, 19 (2015).
  43. Petsky, H. L., Li, A., Chang, A. B. Tailored interventions based on sputum eosinophils versus clinical symptoms for asthma in children and adults. The Cochrane Database of Systematic Reviews. 8, 005603 (2017).
  44. Hisert, K. B., Liles, W. C., Manicone, A. M. A flow cytometric method for isolating cystic fibrosis airway macrophages from expectorated sputum. American Journal of Respiratory Cell and Molecular Biology. 61 (1), 42-50 (2019).
  45. Duncan, G. A., et al. Microstructural alterations of sputum in cystic fibrosis lung disease. Journal of Clinical Investigation Insight. 1 (18), 88198 (2016).
  46. Kemp, R. A., Reinders, D. M., Turic, B. Detection of lung cancer by automated sputum cytometry. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer. 2 (11), 993-1000 (2007).
  47. Blandin Knight, S., et al. Progress and prospects of early detection in lung cancer. Open Biology. 7 (9), (2017).
  48. Gomperts, B. N., Spira, A., Elashoff, D. E., Dubinett, S. M. Lung cancer biomarkers: FISHing in the sputum for risk assessment and early detection. Cancer Prevention Research. 3 (4), 420-423 (2010).
  49. Demoruelle, M. K., et al. Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis & Rheumatology. 70 (4), 516-527 (2018).
  50. Wang, K., et al. Differences of severe acute respiratory syndrome coronavirus 2 shedding duration in sputum and nasopharyngeal swab specimens among adult inpatients with coronavirus disease 2019. Chest. 158 (5), 1876-1884 (2020).
  51. Chattopadhyay, P. K., Hogerkorp, C. -. M., Roederer, M. A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology. 125 (4), 441-449 (2008).
  52. Chattopadhyay, P. K., Gierahn, T. M., Roederer, M., Love, J. C. Single-cell technologies for monitoring immune systems. Nature Immunology. 15 (2), 128-135 (2014).
  53. Perfetto, S. P., et al. Amine-reactive dyes for dead cell discrimination in fixed samples. Current Protocols in Cytometry. , (2010).
  54. Chattopadhyay, P. K., et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nature Medicine. 12 (8), 972-977 (2006).
  55. Duetz, C., Bachas, C., Westers, T. M., Avan de Loosdrecht, A. A. Computational analysis of flow cytometry data in hematological malignancies: future clinical practice. Current Opinion in Oncology. 32 (2), 162-169 (2020).
  56. Saeys, Y., Van Gassen, S., Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nature Reviews. Immunology. 16 (7), 449-462 (2016).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

174

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。