A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol describes an efficient method for dissociating sputum into a single cell suspension and the subsequent characterization of cellular subsets on standard flow cytometric platforms.
Sputum, widely used to study the cellular content and other microenvironmental features to understand the health of the lung, is traditionally analyzed using cytology-based methodologies. Its utility is limited because reading the slides is time-consuming and requires highly specialized personnel. Moreover, extensive debris and the presence of too many squamous epithelial cells (SECs), or cheek cells, often renders a sample inadequate for diagnosis. In contrast, flow cytometry allows for high-throughput phenotyping of cellular populations while simultaneously excluding debris and SECs.
The protocol presented here describes an efficient method to dissociate sputum into a single cell suspension, antibody stain and fix cellular populations, and acquire samples on a flow cytometric platform. A gating strategy that describes the exclusion of debris, dead cells (including SECs) and cell doublets is presented here. Further, this work also explains how to analyze viable, single sputum cells based on a cluster of differentiation (CD)45 positive and negative populations to characterize hematopoietic and epithelial lineage subsets. A quality control measure is also provided by identifying lung-specific macrophages as evidence that a sample is derived from the lung and is not saliva. Finally, it has been demonstrated that this method can be applied to different cytometric platforms by providing sputum profiles from the same patient analyzed on three flow cytometers; Navios EX, LSR II, and Lyric. Furthermore, this protocol can be modified to include additional cellular markers of interest. A method to analyze an entire sputum sample on a flow cytometric platform is presented here that makes sputum amenable for developing high-throughput diagnostics of lung disease.
Technical advancements in the hardware and software of flow cytometers have made it possible to identify many distinct cell populations simultaneously1,2,3,4. The utilization of the flow cytometer in hematopoietic cell research, for example, has led to a much better understanding of the immune system2 and the cellular hierarchy of the hematopoietic system5, as well as the diagnostic distinction of a multitude of different blood cancers6,7
All steps of the sputum processing are performed in a biological safety cabinet with appropriate personal protective equipment.
1. Reagent preparation before starting sputum dissociation
This protocol was developed with a clinical laboratory setting in mind. The focus during the development of the protocol was on simplicity, efficiency, and reproducibility. It was found that the most time-consuming step in the processing of sputum was counting the cells. Therefore, the protocol is set up in such a way that sputum processing and cell labeling can be performed independently from cell counting without loss of time. An accurate cell count, which is still necessary to dilute the sample appropriately for an un.......
The cellular content of sputum includes a large variety of wide-ranging cells, often accompanied by a lot of debris37. In addition, sputum analysis requires a quality control that confirms the sample is collected from the lung instead of the oral cavity38. Therefore, it is not as simple to analyze sputum by flow cytometry as it is for blood, for example, which releases a much cleaner and homogeneous cell suspension. This protocol has addressed all these issues: providing in.......
We want to thank David Rodriguez for his assistance with the figure preparation. Sputum samples were run on the BD LSR II at the UT Health San Antonio Flow Cytometry Shared Resource Facility, supported by UT Health, NIH-NCI P30 CA054174-20 (CTRC at UT Health) and UL1 TR001120 (CTSA grant).
....Name | Company | Catalog Number | Comments |
1% Paraformaldehyde Flow-Fix | Polysciences | 25037 | |
100 µM nylon cell strainers, Falcon #352360 | Fisher Scientific | 08-771-19 | |
3 M NaOH | EMD | SX0593-1 | |
50 mL conical falcon tube | Fisher Scientific | 14-432-22 | |
Alexa488 anti-human CD19 | BioLegend | 302219 | |
Alexa488 anti-human CD3 | BioLegend | 300415 | |
Alexa488 anti-human cytokeratin | BioLegend | 628608 | |
Alexa488 PanCK, CD3, and CD19 Isotype | BioLegend | 400129 | |
BV510 anti-human CD45 | BioLegend | 304036 | |
CD66b FITC isotype | BD Biosciences | 555748 | |
CompBead Plus Compensation Beads | BD Biosciences | 560497 | |
Corning Polystyrene dispoable sterile bottle 250 mL | Fisher Scientific | 09-761-4 | |
Corning Polystyrene dispoable sterile bottle 500 mL | Fisher Scientific | 09-761-10 | |
CS&T beads | BD Biosciences | 655051 | |
DTT | Fisher Scientific | BP172-5 | |
FITC anti-human CD66b | GeneTex | GTX75907 | |
Fixable Viability Stain | BD Biosciences | 564406 | |
FlowCheck | Beckman Coulter | A69183 | |
FlowSet | Beckman Coulter | A69184 | |
HBSS | Fisher Scientific | 14-175-095 | |
NAC | Sigma-Aldrich | A9165 | |
NIST Beads, 05 μM | Polysciences | 64080 | |
NIST Beads, 20 μM | Polysciences | 64160 | |
NIST Beads, 30 μM | Polysciences | 64170 | |
PE anti-human CD45 | BioLegend | 304039 | |
PE-CF594 anti-human EpCAM | BD Biosciences | 565399 | |
PE-CF594 CD206/EpCAM Isotype | BD Biosciences | 562292 | |
PE-CR594 anti-human CD206 | BD Biosciences | 564063 | |
Sodium citrate dihydrate | EMD | SX0445-1 | |
Trypan Blue solution, 0.4% | Fisher Scientific | 15250061 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved