登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

这里我们提出了一个标准化的SAH小鼠模型,由血管内丝穿孔诱导,术后24小时结合磁共振成像(MRI),以确保正确的出血部位并排除其他相关的颅内病变。

摘要

模仿蛛网膜下腔出血(SAH)的血管内丝穿孔模型是一种常用的模型 - 然而,该技术可导致高死亡率以及无法控制的SAH体积和其他颅内并发症,如中风或颅内出血。在该协议中,提出了由血管内丝穿孔诱导的标准化SAH小鼠模型,并在手术后24小时结合磁共振成像(MRI)以确保正确的出血部位并排除其他相关的颅内病变。简而言之,用腹腔内氯胺酮/ 甲苯噻嗪(70mg / 16mg / kg体重)注射液麻醉C57BL / 6J小鼠并置于仰卧位。中线颈部切口后,暴露颈总动脉(CCA)和颈动脉分叉,以逆行方式将5-0不可吸收的单丝聚丙烯缝合线插入颈外动脉(ECA)并推进到颈总动脉。然后,将细丝插入颈内动脉 (ICA) 并向前推入脑前动脉 (ACA)。手术恢复后,小鼠在24小时后接受7.0 T MRI。出血量可以通过术后MRI进行量化和分级,从而实现强大的实验性SAH组,并可选择根据血量进行进一步的亚组分析。

引言

蛛网膜下腔出血 (SAH) 是由颅内动脉瘤破裂引起的,可构成危及生命的急症,与大量发病率和死亡率相关,约占卒中12 的 5%。SAH 患者表现为严重头痛、神经功能障碍和进行性意识障碍3.大约30%的SAH患者在初始出血事件4之后的前30天内死亡。临床上,50% 的患者在早期脑损伤后出现延迟性脑损伤 (DBI)。DBI 的特征是脑缺血延迟和神经功能缺损延迟。目前的研究表明,几种不同因素的协同作用导致神经功能丧失,包括血脑屏障的破坏,小动脉的收缩,微循环功能障碍和血栓形成56

SAH的一个独特方面是发病机制起源于实质外位置,但随后导致实质内有害的级联反应:病理学始于蛛网膜下腔内血液的积聚,引发多种实质内效应,例如神经炎症,神经元和内皮细胞凋亡,皮质扩散去极化和脑水肿形成78.

临床研究受到几个因素的限制,这使得动物模型成为一致和准确地模仿疾病病理变化的关键因素。已经提出了不同的SAH模型方案,例如,将自体血液注射到大水箱(ACM)中。此外,改良方法将自体血液分别注射到大水箱和视交叉水箱(APC)中910。虽然自体血液注射是模拟蛛网膜下腔出血后血管痉挛和炎症反应病理过程的简单方法,但随后颅内压(ICP)的升高相对较慢,并且没有诱导血脑屏障通透性显着变化1112。另一种方法,动脉周围血液放置,通常用于大型SAH模型(例如,猴子和狗),涉及在血管周围放置抗凝自体血液或类似的血液制品。可以用显微镜观察动脉的直径变化,作为SAH13后脑血管痉挛的指标。

Barry等人于1979年首次描述了血管内穿孔模型,其中基底动脉在取出颅骨后暴露;然后用钨微电极刺穿动脉,使用微观立体定向技术14。1995年,Bederson和Veelken修改了脑缺血的Zea-Longa模型,建立了血管内穿孔,自1516以来一直在不断改进。这种方法是基于这样一个事实,即小鼠和人类共享一个相似的颅内血管网络,称为威利斯的圆圈。

对于小鼠模型中SAH的术后评估和分级,已经提出了不同的方法。Sugawara等人开发了一种自2008年以来被广泛使用的分级量表17。该方法根据形态学变化评估SAH的严重程度。然而,对于这种方法,必须在直接视觉下检查小鼠的脑组织形态,因此,必须牺牲小鼠进行评估。此外,已经建立了几种测定体内SAH严重程度 的方法 。方法范围从简单的神经学评分到颅内压监测(ICP),再到各种放射成像技术。此外,MRI 分级已被证明是一种新的非侵入性工具,用于对 SAH 严重程度进行分级,与神经系统评分1819 相关。

在这里,提出了由血管内穿孔引起的SAH模型的方案,并结合术后MRI。为了建立一个系统来客观化 体内 出血量,我们还开发了一个基于7.0 T高分辨率T2加权MRI的总血容量SAH分级和定量的系统。这种方法可确保正确诱导 SAH 并排除其他病症,如卒中、脑积水或脑出血 (ICH) 和并发症。

研究方案

实验是根据德国柏林的Landesamt fuer Gesundheit und Soziales(LaGeSo)制定的指南和法规进行的(G0063/18)。在这项研究中,使用了C57Bl / 6J雄性(8-12周龄)小鼠,体重为25±0.286克(平均±s.e.m.)。

1. 动物准备

  1. 腹腔注射氯胺酮(70mg / kg)和甲苯噻嗪(16mg / kg)诱导麻醉。保持正常的体温,有助于快速诱导深度麻醉。通过疼痛刺激(例如脚趾捏合)测试足够的镇静剂,并验证是否没有反应。
  2. 用剃须刀小心地剃掉小鼠的颈部毛发,用70%乙醇清洁,然后用betadine/氯己定清洁,并在皮肤表面涂抹1%利多卡因以控制局部疼痛。
  3. 将鼠标置于仰卧位。用胶带固定四肢和尾巴,轻轻地将颈部皮肤拉伸到手术的另一侧。同时,稍微抬高颈部。
  4. 使用眼药软膏(例如,5%右泛醇)以防止手术过程中眼睛脱水。

2. 电磁超声抗原感应

figure-protocol-615
1:手术技术的分步图像。A)暴露的右颈动脉解剖结构的描述:识别CCA及其分叉为ICA和ECA,以及ECA的小分支(OA和STA)。(B) 非洲经委会从周围组织中动员起来,在切割之前用两根缝线连接。第三个结扎需要松散地放置在分叉附近,而不会阻塞它。(C)当ECA被仔细切开时,ICA和CCA被暂时闭塞(用结扎或夹子),以防止ECA过度出血。(D) 将长丝插入非洲经委会并推进到共同国家评估中。必须仔细收紧预先安排的结扎,以免发生血液积液,但仍可推进细丝。(E) 重新开放ICA和CCA,非洲经委会的残端需要调整到颅骨方向。通过将灯丝向前推~9mm进入ICA,将达到ACA-MCA分岔,然后通过将灯丝进一步推约3mm来穿孔容器。(F)在确保CCA的时间再连接后,将细丝取出。ECA的预先排列的结扎很快被阻塞,并且CCA被重新打开以允许再灌注。缩写:ACA =脑前动脉,CCA =颈总动脉,ECA =颈外动脉,MCA =大脑中动脉,ICA =颈内动脉,OA =枕动脉,PPA =翼腭动脉,STA =甲状腺上动脉。比例尺 = 2 mm。请点击此处查看此图的大图。

  1. 用无菌手术刀打开颈部皮肤,从下巴到胸骨上边缘(1.5厘米),并钝地将唾液腺与周围的结缔组织分开。
  2. 沿着气管的一侧(在这种情况下是右侧)分离肌肉群,暴露出覆盖着滋养血管和小静脉的颈总动脉(CCA)鞘。CCA和迷走神经彼此靠近。
  3. 解散CCA并留下免费的8-0CCA周围的丝绸缝合线,无需提前将其绑扎。注意迷走神经的保护,因为它很容易受损(图1A)。
  4. CCA、ICA 和 ECA 的三重分岔在透析的下三分之一处可见。解剖 ECA 的远端,并尽可能远地将血管铰接两倍。
  5. 在两次连接段的中点断开 ECA,形成血管残端。
  6. 在ECA残端周围预先安排一根细丝结扎,在成功插入细丝之前不要关闭它。
  7. 使用缝合线或微夹暂时遮挡ICA和CCA(图1B)。
  8. 使用微血管剪刀在ECA中做一个小切口(大约是ECA直径的一半)。将5-0(或4-0)prolene长丝插入ECA并将其推进到CCA中。
  9. 稍微关闭ECA上的连字,同时松开ICA和CCA上的微夹(图1C)。
  10. 轻轻拉回牙丝,在颅方向上调整ECA残端,将细丝通过分叉进入ICA(图1D)。
  11. 将灯丝尖端向内侧指向气管中线约 30°,与水平面成 ~30° 角。在 ICA 内向前推灯丝。到达ACA-MCA分岔后,遇到阻力(~9 mm)。
  12. 将灯丝进一步推进 3 mm,穿孔正确的 ACA。立即将细丝抽取到 ECA 残端,让血液流入蛛网膜下腔。
  13. 将灯丝保持在此位置约10秒(图1E)。肌肉震颤、同侧瞳孔缩小、气喘吁吁、心律改变和尿失禁的存在可能是手术成功的支持证据。
  14. 暂时关闭CCA以避免过量失血。立即拔出灯丝,并用预先安排的缝合线连接ECA。重新打开CCA并允许再灌注和进一步将血液积液到蛛网膜下腔(图1F)。
  15. 检查出血泄漏后,对伤口周围的皮肤进行消毒,以防止术后皮肤感染,并用不可吸收的4-0聚酯纤维缝合线缝合伤口。
  16. 将鼠标放在热盒中,直到恢复意识。等到动物完全清醒,并确保它恢复了足够的意识来维持胸骨卧位。在完全恢复之前,不要将动物送回其他小鼠的陪伴下。
  17. 给予200-300mg体重对乙酰氨基酚用于术后疼痛缓解。
  18. 手术后每天检查小鼠。

3. 核磁共振测量

  1. 手术后24小时,使用啮齿动物扫描仪(材料表)和专用的小鼠头谐振器进行MRI - 这里使用20 mm发射/接收正交体积谐振器。
  2. 将小鼠放在加热的循环水毯上,以确保体温恒定至〜37°C。 在 O2/N2O 混合物 (30%/70%) 中用 2.5% 异氟醚诱导麻醉,并在连续通气监测下通过面罩维持 1.5-2% 异氟醚。
  3. 首先执行快速参考扫描,采集 3 个正交切片包(Tri-Pilot-Multi,重复时间 TR/回波时间 TE = 200 ms/3 ms 的 FLASH,1 个平均值,翻转角度 FA = 30°,视场 FOV = 28 mm x 28 mm,矩阵 MTX = 256 x 256,切片厚度 1 mm,总采集时间 TA = 30 s)。
  4. 然后使用高分辨率T2加权2D涡轮自旋回波序列进行成像(成像参数TR / TE = 5505 ms / 36 ms,RARE因子8,6平均值,46个连续轴向切片,切片厚度为0.35 mm以覆盖整个大脑,FOV = 25.6 mm x 25.6 mm,MTX = 256 x 256,TA = 13分钟)。
  5. 如果结果不清楚,请使用额外的呼吸触发T2 *加权梯度回波序列,其等高度与T2w扫描相同(2D FLASH,TR / TE = 600 ms / 6.3 ms,FA = 30°,1个平均,20个轴向切片,厚度为0.35 mm,FOV和MTX与T2w相同,TA = 5-10分钟,具体取决于呼吸速率)。
  6. 将数据转换为DICOM图像格式,并使用ImageJ软件进行血凝块的SAH分级和体积测定。有关定量的详细信息在补充材料中被列为分步指南(补充图1)。

结果

死亡率
对于这项研究,共有92只年龄在8-12周之间的雄性C57Bl / 6J小鼠接受SAH手术;在这些中,我们观察到总死亡率为11.9%(n = 12)。死亡率仅发生在手术后的前6-24小时内,表明围手术期死亡率以及SAH出血本身是最可能的促成因素。

SAH出血等级
共有50只小鼠在术后24小时接受MRI以确认SAH并确保检测其他共同发生的病症,包括亚急性缺血性中风和脑积?...

讨论

综上所述,血管内丝穿孔操作诱导的标准化SAH小鼠模型具有轻微的浸润,手术时间短和可接受的死亡率。术后24小时进行MRI,以确保正确的出血部位并排除其他相关的颅内病变。此外,我们对不同的SAH出血等级进行了分类并测量了出血量,从而可以根据出血等级进行进一步的亚组分析。

鼠标的充分定位会影响正确穿孔的成功。小鼠的脖子应略微伸展到手术的另一侧,头部略微...

披露声明

无利益冲突

致谢

SL得到了中国国家留学基金委的支持。KT得到了柏林卫生研究所和Sonnenfeld-Stiftung的BIH-MD奖学金的支持。RX由BIH-Charité临床科学家计划提供支持,该计划由Charité-Universitätsmedizin Berlin和柏林卫生研究所资助。我们感谢德国研究基金会(DFG)和柏林夏里特医学院开放获取出版基金的支持。

材料

NameCompanyCatalog NumberComments
Eye creamBayer815529836Bepanthen
Images analysis softwareImageJBundled with Java 1.8.0_172
Ligation suture (5-0)SMISilk black USP
Light source for microscopeZeissCL 6000 LED
KetamineCP-pharma797-037100 mg/mL
MRIBrukerPharmascan 70/16 7 Tesla
MRI images acquired softwareBrukerBruker Paravision 5.1
Paracetamol (40 mg/mL)bene Arzneimittel4993736
Prolene filament (5-0)ErhiconEH7255
RazorWellaHS61
Surgical instrument (Fine Scissors)FST14060-09
Surgical instrument (forceps#1)AESCULAPFM001R
Surgical instrument (forceps#2)AESCULAPFD2855R
Surgical instrument (forceps#3)HammacherHCS 082-12
Surgical instrument (Needle holder)FST91201-13
Surgical instrument (Vannas Spring Scissors)FST15000-08
Surgical microscopeZeissStemi 2000 C
Ventilation monitoringStony BrookSmall Animal Monitoring & Gating System
Wounding suture(4-0)ErhiconCB84D
XylavetCP-pharma797-06220 mg/mL

参考文献

  1. Macdonald, R. L., Schweizer, T. A. Spontaneous subarachnoid haemorrhage. The Lancet. 389 (10069), 655-666 (2017).
  2. van Gijn, J., Kerr, R. S., Rinkel, G. J. Subarachnoid haemorrhage. The Lancet. 369 (9558), 306-318 (2007).
  3. Abraham, M. K., Chang, W. -. T. W. Subarachnoid hemorrhage. Emergency Medicine Clinics of North America. 34 (4), 901-916 (2016).
  4. Schertz, M., Mehdaoui, H., Hamlat, A., Piotin, M., Banydeen, R., Mejdoubi, M. Incidence and mortality of spontaneous subarachnoid hemorrhage in martinique. PLOS ONE. 11 (5), 0155945 (2016).
  5. Okazaki, T., Kuroda, Y. Aneurysmal subarachnoid hemorrhage: intensive care for improving neurological outcome. Journal of Intensive Care. 6 (1), 28 (2018).
  6. Kilbourn, K. J., Levy, S., Staff, I., Kureshi, I., McCullough, L. Clinical characteristics and outcomes of neurogenic stress cadiomyopathy in aneurysmal subarachnoid hemorrhage. Clinical Neurology and Neurosurgery. 115 (7), 909-914 (2013).
  7. de Oliveira Manoel, A. L., et al. The critical care management of spontaneous intracranial hemorrhage: a contemporary review. Critical Care. 20 (1), 272 (2016).
  8. Schneider, U. C., et al. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathologica. 130 (2), 215-231 (2015).
  9. Delgado, T. J., Brismar, J., Svendgaard, N. A. Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke. 16 (4), 595-602 (1985).
  10. Piepgras, A., Thomé, C., Schmiedek, P. Characterization of an anterior circulation rat subarachnoid hemorrhage model. Stroke. 26 (12), 2347-2352 (1995).
  11. Suzuki, H., et al. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. Journal of Clinical Investigation. 104 (1), 59-66 (1999).
  12. Dudhani, R. V., Kyle, M., Dedeo, C., Riordan, M., Deshaies, E. M. A Low mortality rat model to assess delayed cerebral vasospasm after experimental subarachnoid hemorrhage. Journal of Visualized Experiments: JoVE. (71), e4157 (2013).
  13. Iuliano, B. A., Pluta, R. M., Jung, C., Oldfield, E. H. Endothelial dysfunction in a primate model of cerebral vasospasm. Journal of Neurosurgery. 100 (2), 287-294 (2004).
  14. Barry, K. J., Gogjian, M. A., Stein, B. M. Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke. 10 (5), 538-541 (1979).
  15. Bederson, J. B., Germano, I. M., Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 26 (6), 1086-1092 (1995).
  16. Veelken, J. A., Laing, R. J. C., Jakubowski, J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke. 26 (7), 1279-1284 (1995).
  17. Sugawara, T., Ayer, R., Jadhav, V., Zhang, J. H. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. Journal of Neuroscience Methods. 167 (2), 327-334 (2008).
  18. Egashira, Y., Shishido, H., Hua, Y., Keep, R. F., Xi, G. New grading system based on magnetic resonance imaging in a mouse model of subarachnoid hemorrhage. Stroke. 46 (2), 582-584 (2015).
  19. Mutoh, T., Mutoh, T., Sasaki, K., Nakamura, K., Taki, Y., Ishikawa, T. Value of three-dimensional maximum intensity projection display to assist in magnetic resonance imaging (MRI)-based grading in a mouse model of subarachnoid hemorrhage. Medical Science Monitor. 22, 2050-2055 (2016).
  20. Kothari, R. U., et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 27 (8), 1304-1305 (1996).
  21. Leclerc, J. L., et al. A comparison of pathophysiology in humans and rodent models of subarachnoid hemorrhage. Frontiers in Molecular Neuroscience. 11, 71 (2018).
  22. Titova, E., Ostrowski, R. P., Zhang, J. H., Tang, J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurological Research. 31 (6), 568-581 (2009).
  23. Marbacher, S., et al. Systematic review of in vivo animal models of subarachnoid hemorrhage: Species, standard parameters, and outcomes. Translational Stroke Research. 10 (3), 250-258 (2019).
  24. Marbacher, S., Fandino, J., Kitchen, N. D. Standard intracranial in vivo animal models of delayed cerebral vasospasm. British Journal of Neurosurgery. 24 (4), 415-434 (2010).
  25. Thompson, J. W., et al. In vivo cerebral aneurysm models. Neurosurgical Focus. 47 (1), 1-8 (2019).
  26. Frontera, J. A., et al. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: The modified fisher scale. Neurosurgery. 59 (1), 21-26 (2006).
  27. Fisher, C. M., Kistler, J. P., Davis, J. M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 6 (1), 1-9 (1980).
  28. Wilson, D. A., et al. A simple and quantitative method to predict symptomatic vasospasm after subarachnoid hemorrhage based on computed tomography: Beyond the fisher scale. Neurosurgery. 71 (4), 869-875 (2012).
  29. Schüller, K., Bühler, D., Plesnila, N. A murine model of subarachnoid hemorrhage. Journal of Visualized Experiments: JoVE. (81), e50845 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

178

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。