登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出了大鼠模型中正常变 位异地 保存后异位植入心脏的评估方案。

摘要

心脏移植是终末期心力衰竭最有效的治疗方法。尽管治疗方法和干预措施有所改善,但等待移植的心力衰竭患者人数仍在增加。常温 异地 保存技术已被确立为与传统静态冷藏技术相当的方法。该技术的主要优点是供体心脏可以在生理条件下保存长达12小时。此外,该技术允许在循环死亡后对供体心脏进行复苏,并应用所需的药物干预来改善植入后的供体功能。已经建立了许多动物模型来改进常温 异地 保存技术并消除与保存相关的并发症。虽然与小型动物模型相比,大型动物模型易于处理,但它既昂贵又具有挑战性。我们提出了一个正常变温异位供体心脏保存后异 腹部移植的大鼠模型。这种模型相对便宜,可以由单个实验者完成。

引言

心脏移植仍然是难治性心力衰竭的唯一可行疗法1,2,3,4。尽管需要心脏移植的患者数量稳步增加,但尚未观察到供体器官可用性的比例增加5。为了解决这个问题,已经开发了保存捐赠者心脏的新方法,目的是改善挑战并增加捐赠者的可用性6,7,8,9。

使用器官护理系统(OCS)机器的常母异位心脏灌注(NESHP)已成为一种临床干预措施1,3。该技术被认为是传统静态冷藏(SCS)方法2,9的合适替代方案。NESHP有效缩短冷缺血的持续时间,减少代谢需求,并促进供体器官运输过程中的最佳营养供应和氧合10,11。尽管这种方法在改善供体器官保存方面具有明显的潜力,但其临床应用和进一步研究受到高成本的限制。因此,NESHP的临床前动物模型对于确定与该技术相关的关键技术挑战至关重要12,13。猪和大鼠由于其缺血耐受性而成为临床前研究的首选动物模型9。尽管猪模型是基础和转化研究的理想选择,但它受到其高成本以及护理和维护所需的密集劳动的限制。相比之下,大鼠模型更便宜且更容易处理14

在本研究中,我们引入了NESHP的简化大鼠模型,然后是异位心脏移植,以评估保存技术对植入后移植条件的影响。该模型简单,具有成本效益,可以由单个实验者执行。 图 1 显示了该过程的原理图。

研究方案

全南大学医院实验动物研究中心伦理委员会(批准文号)中国农业大学 IACUC - H - 2022-36) 批准了所有动物实验。本研究中使用的雄性Sprague-Dawley大鼠(350-450g)按照实验动物的护理和使用指南接受了护理。将大鼠饲养在温控室中,进行12小时的明暗循环,并提供标准食物和水。

1. 准备

注意:单个实验者可以进行所有实验程序。

  1. 手术前组装朗根道夫装置,包括氧合器、泵和灌注管路(图2)。用 20 mL 盐水溶液填充灌注回路并循环直至灌注自体血。
    注意:此步骤的目的是加热体外回路。
  2. 通过连接到主动脉套管的旋塞 阀将 心脏麻痹管连接到回路,并准备注射泵进行最后的心脏停搏输注。
    注意:确保从灌注回路和心脏停搏管中去除任何气泡。
  3. 将温度传感器放置在将储存供体心脏的储液器内,将电路的温度保持在37°C。
  4. 手术准备
    1. 为每只供体和受体大鼠准备一套单独的无菌微型仪器和材料。
      1. 为捐赠者准备手术套装:一把手术剪刀、一对微型镊子、锋利的蚊钳、5-0 丝线、棉签、50 mL 注射器、心脏停搏液 (CPS) 灌注管、注射泵、18 G 血管导管、一套 5 Fr. 股骨导管和无菌纱布。
      2. 为接受者准备手术套装:显微手术剪刀、伤口牵开器、一对微钳、蚊钳、血管微夹、1 mL 注射器、一条 5-0 和 9-0 聚丙烯缝合线、5-0 丝线、棉签和无菌纱布。

2. 供体心脏保存和采血

  1. 在麻醉室中用异氟醚(5%)诱导供体大鼠麻醉,并在将其放在手术台上之前记录大鼠的重量。
  2. 将大鼠仰卧在手术台上,并通过鼻锥输送2%-2.5%异氟醚和90%氧气进行连续麻醉。
  3. 通过检查对脚趾捏和呼吸频率缺乏反应来验证麻醉深度,呼吸频率应在每分钟 50-60 次之间。
    注意:足够的麻醉水平对于避免对供体大鼠造成不必要的压力和疼痛至关重要。
  4. 涂抹眼部润滑剂并将耻骨区域剃到锁骨,在那里进行手术。用碘基磨砂膏和 70% 酒精清洁该区域。
  5. 插管
    1. 做一个7厘米的中线腹部切口和从剑突到锁骨中段的3厘米双侧切口。从胸部区域取下毛皮。
    2. 使用棉签,将腹部器官动员到腹部左侧。将腹主动脉与腹膜后筋膜和脂肪组织隔离。
    3. 使用 1 mL 注射器通过下腔静脉 (IVC) 注射溶解在 0.3 mL 等渗盐水中的 1,000 IU 肝素。用棉签轻轻按压针孔出血,以阻止针孔出血。
      注意:注射过程中要小心空气栓塞,因为它会导致心脏骤停。
    4. 将一根 5 Fr. 股骨导管插入腹主动脉 (Abd. A)。确保导管尖端到达主动脉弓。通过评估导管插入部分的大致长度来确认导管位置。
  6. 采血
    1. 通过插入 Abd. A 中的导管 收集 约 10 mL 的血液。
    2. 之后,用等渗盐水稀释启动血液,直到总体积达到 12 mL。加入5mg头孢唑啉溶解在0.3mL盐水和胰岛素(20IU)中。
  7. 心搏骤停
    1. 将先前制备的CPS灌注管连接到腹导管,并以800mL / h的速率使用注射泵开始CPS给药。
    2. 从横膈膜打开胸腔,并在膈肌附近切开IVC,以防止心室扩张。沿胸椎双侧切肋骨,直至胸廓入口。用蚊钳向上反射活动腹侧胸壁。
    3. 使用微镊子完全切除胸腺,以观察主动脉弓。如果胸腺动脉出血,则进行轻度按压。
  8. 萃取
    1. 施用所有CPS后,将主动脉弓与周围组织隔离。仔细解剖左锁骨下动脉下方。
    2. 横断头臂动脉,左颈总动脉位于远处位置,留下主动脉弓较长的残端,以便在主动脉插管期间易于处理。使主肺动脉 (MPA) 的横断面尽可能靠近分叉。注意不要损伤左心耳。
    3. 小心地用5-0丝线结扎上腔静脉(SVC)和IVC,防止右心房(RA)和冠状窦阻塞。用湿纱布覆盖胸部左缘,将心脏放在其上,轻轻缩回SVC和IVC结扎以露出肺门。
    4. 用5-0丝线将肺静脉和无齐静脉结扎在一起。切断结扎处的组织背侧并提取心脏。检查心脏是否有任何损伤。最后,在主动脉插管前称量心脏。

3. 非原位 灌注

  1. 主动脉插管和灌注
    1. 在主动脉插管之前,用血液灌注代替生理盐水灌注回路。
    2. 将主动脉套管插入主动脉弓,并用临时微型夹将其固定。确保套管的尖端位于头臂交界处。
    3. 用微镊子轻轻抓住主动脉来确认套管的正确位置。
    4. 以 2-3 mL/min 的流速开始灌注,让灌注液从插管部位泄漏以去除任何气泡。
    5. 通过连接到监测系统的传感器监测灌注压力和温度。
    6. 用食指和食指轻轻按摩心脏,直到静脉血液从主肺动脉 (MPA) 泄漏。
    7. 用 1-0 丝结扎固定主动脉,并在验证所有设置(灌注回路、灌注压力、温度)后取下夹子。
    8. 放置永久性结扎后,确保心脏在几秒钟内开始收缩,并在 60 秒内达到正常节律。37 °C 下平均灌注压为 55-65 mmHg,冠状动脉流速为 3-4 mL 表明灌注充分。
    9. 从储液器中收集 0.15 mL 血液,并在灌注开始时检查血气分析 (BGA),此后每 20 分钟检查一次。灌注过程中监测和记录pH值、pCO2、pO2、葡萄糖、血细胞比容、钾和乳酸。灌注 120 分钟后,以 250 mL/h 的速率通过注射泵施用 3 mL 的 Custodiol 以停止心脏。

4. 植入

  1. 准备接收者
    1. 停止异位 灌注前30分钟开始接受者准备。
    2. 使用与步骤2.2中提到的相同方法麻醉受体动物。
    3. 将大鼠仰卧放在加热垫上,并将温度探头插入直肠以将体温保持在37°C。
    4. 涂抹眼部润滑剂,将耻骨剃到上腹部,并用碘基磨砂膏和 70% 酒精清洁该区域。
  2. 药物
    1. 皮下注射 2 mL 温盐水,以补偿手术期间流失的液体。皮下注射200 IU肝素。
    2. 通过皮下或肌肉注射溶解在 0.3 mL 盐水中的 10 mg/kg 头孢唑啉来预防抗生素。
    3. 通过皮下注射20mg / kg双氯芬酸来控制疼痛。
  3. 进行中线剖腹手术并插入牵开器以扩大腹腔。使用棉签将腹部器官移动到受体的左侧,为手术腾出空间。
  4. 通过用温湿的纱布包裹腹部器官来防止脱水。在手术过程中,用50mL注射器间歇性地散布温盐水。
  5. 利用放大倍率为10倍的手术显微镜,用棉签钝切解剖来调动十二指肠和近端空肠,以暴露Abd.A.和IVC。准备阿卜杜勒。A和IVC用于吻合并系统地植入供体心脏,按照 图3 或先前记录的方法15
    注意:不要将Abd.A.和IVC分开。
    1. 假设血管吻合口放置在下部,准备足够的主动脉和IVC部分用于钳夹。
    2. 使用棉签或锋利的锯齿状镊子进行钝器制备,以去除血管周围的脂肪和筋膜。
    3. 将5-0丝结扎器放在肠系膜分支以及主要血管的颅侧和尾侧。抬高腹部血管,用 5-0 条丝线凝固或结扎腰支。切记要保留睾丸动脉和静脉,不要夹住它们。
    4. 使用结扎器抬起血管并将微夹定位在大血管的肠系膜分支、尾部和颅侧,以阻止吻合部位的血流。在放置夹子之前关闭加热垫,因为过度加热会加剧肢体缺血。确保在松开容器后打开加热垫,以避免体温过低。
    5. 使用27G针刺穿主动脉,并用微型剪刀将切口拉长至等于或略大于供体升主动脉(Asc)的开口。A),大约是 5 毫米。
    6. 以与主动脉切开术相同的方式在IVC上做一个纵向切口,但与主动脉切口相比,使其更接近尾侧3毫米。
    7. 开始吻合,将供体心脏放在受体腹部的右侧并连接供体 Asc。A 到收件人的 Abd。A在纵向切口的颅角有一个简单的断针(9-0聚丙烯)。
    8. 将心脏移动到受体腹部的左侧,并对供体的 ASC 进行吻合。A 与收件人的 Abd。A采用9-0聚丙烯缝合线。
    9. 在纵向切口的尾角和颅角处用两条中断的缝合线(9-0聚丙烯)将供体肺动脉固定在IVC上。
    10. 从血管腔内侧进行静脉吻合的前半部分,从血管腔外侧完成后半部分。在拧紧结之前,用盐水冲洗田野以防止空气栓塞。
  6. 排气和脱夹
    1. 完成吻合后首先取下肠系膜静脉夹,让心脏右侧充满静脉血。
    2. 去除冠状动脉回路和腹腔中的空气。A.通过逆行冠状动脉灌注几秒钟。
    3. 在血管两侧放置一块纱布,取下尾夹和颅夹。
    4. 用棉签轻轻按压1-2分钟。确保足够的止血后,取出拭子并用温盐水清洗吻合口。
      注意:心脏应在再灌注的第一分钟内开始跳动。如果受体大鼠的体温低于35°C,温度达到36°C后心律将恢复正常。
  7. 以蜿蜒的方式更换腹部器官,并使用连续的5-0聚丙烯缝合线关闭腹部切口的层。
  8. 手术后,将麻醉动物放在加热垫上方的清洁区域,直到体温达到 37°C。
    注意:在体温达到37°C之前,请勿开始术后检查。 将麻醉维持在2-2.5%异氟醚直至实验结束。
  9. 监测移植供体心脏的心电图3小时。然后,在深度麻醉下切除心脏以进行组织学研究。
    注意:在切除心脏之前,通过缺乏踏板反射来确认麻醉深度。外科手术和心电图监测需要不到6小时。围手术期给药(步骤4.2.3.)的双氯芬酸能够在整个手术期间进行疼痛管理。镇痛方案可根据机构动物使用指南进行调整。

结果

图1 显示了小动物模型中使用的实验设计。 图2 显示了改进的朗根道夫灌注装置,其中包括一个小动物氧合器。异位腹腔植入的吻合顺序如图 3所示。

图4 显示了用于评估 非原位 灌注期间心脏活力的参数,例如乳酸、钾和平均主动脉压。在这项研究中,使用常温 异位 保存?...

讨论

我们建立这个模型的重点是复制正常的人类心脏移植。非射血模型是在 非原位 环境中保存供体心脏的常用首选技术16。虽然射血模型在 评估非原 位灌注期间的心脏功能方面具有许多优势17,但它们不适用于异位移植模型。在异位移植中,植入的供体心脏需要克服宿主心脏在受体循环系统中产生的收缩后负荷压力,导致供体心脏性能有限,并且在?...

披露声明

作者没有利益冲突。

致谢

这项工作得到了全南国立大学医院生物医学研究所的B2021-0991和韩国国家研究基金会的NRF-2020R1F1A1073921的支持

材料

NameCompanyCatalog NumberComments
AES active evacuation systemSmiths medicalPC-6769-51AUtilize CO2 and excess isoflurane
Anesthesia machineSmiths medicalPC-8801-01AMixes isoflurane and oxyegn and delivers to animal
B20 patient monitorGE medical systemsB20to observe mean aortic pressure and temperature
Homeothermic Monitoring SystemHarvard apparatus55-7020To monitor and maintain animal's temperature
Micro-1 Rat oxygenatorDongguan Kewei medical instrumentsMicro-MOFor gas exchange in the langendorff circuit
Micropuncture introducer SetCOOK medicalG48007for delivering cardioplegic solution to the arch through the abdominal aorta
MicroscopeAmscopeMU1403For zooming surgical field (Recipient)
Surgical loupeSurgiTelL2S09For zooming surgical field (Donor)
Syringe pumpAMP allSP-8800To deliver cardioplegic solution
Transonic flow sensorTransonicME3PXL-M5Perfusion circuit flow sensor
Transonic tubing flow moduleTransonicTS410flow acquiring system
Watson - Marlow pumpsHarvard apparatus010.6131.DAOPeristaltic pump used for recirculate perfusate
WBC-1510AJEIO TECHE03056DHeating bath
Sprague-Dawley ratsSamtako Bio Korea Co., Ltd., Osan City Korea
Medications
BioHAnce Gel Eye DropsSENTRIX Animal carewet ointments for eye
CefazolinJW pharmaceuticalFor prophilaxis
CustodiolDR, FRANZ KOHLER CHEMIE GMBHFor heart harvesting
DiclofenacMyungmoon Pharm. Co. LtdFor pain control
HeparinJW pharmaceuticalAnticoagulant
InsulinJW pharmaceuticalhormon therapy
SalineJW pharmaceuticalFor hydration therapy

参考文献

  1. Langmuur, S. J. J., et al. Normothermic ex-situ heart perfusion with the organ care system for cardiac transplantation: A meta-analysis. Transplantation. 106 (9), 1745-1753 (2022).
  2. Ardehali, A., et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomized non-inferiority trial. Lancet. 385 (9987), 2577-2584 (2015).
  3. Dang Van, S., et al. Ex vivo perfusion of the donor heart: Preliminary experience in high-risk transplantations. Archives of Cardiovascular Diseases. 114 (11), 715-726 (2021).
  4. Zhou, P., et al. Donor heart preservation with hypoxic-conditioned medium-derived from bone marrow mesenchymal stem cells improves cardiac function in a heart transplantation model. Stem Cell Research and Therapy. 12 (1), 5f6 (2021).
  5. Messer, S., Large, S. Resuscitating heart transplantation: the donation after circulatory determined death donor.European. Journal of Cardio-Thoracic Surgery. 49 (1), 1-4 (2016).
  6. Trahanas, J. M., et al. Achieving 12 hour normothermic ex situ heart perfusion: an experience of 40 porcine hearts. ASAIO Journal. 62 (4), 470-476 (2016).
  7. Yang, Y., et al. Keeping donor hearts in completely beating status with normothermicblood perfusion for transplants. The Annals of Thoracic Surgery. 95 (6), 2028-2034 (2013).
  8. Van Caenegem, O., et al. Hypothermic continuous machine perfusion enables preservation of energy charge and functional recovery of heart grafts in an ex vivo model of donation following circulatory death. European Journal of Cardiothoracic Surgery. 49 (5), 1348-1353 (2016).
  9. Lu, J., et al. Normothermic ex vivo heart perfusion combined with melatonin enhances myocardial protection in rat donation after circulatory death hearts via inhibiting NLRP3 inflammasome-mediated pyroptosis. Frontiers in Cell and Developmental Biology. 9, 733183 (2021).
  10. Pinnelas, R., Kobashigawa, J. A. Ex vivo normothermic perfusion in heart transplantation: a review of the TransMedics Organ Care System. Future Cardiology. 18 (1), 5-15 (2022).
  11. Fuchs, M., et al. Does the heart transplant have a future. European Journal of Cardiothoracic Surgery. 55, i38-i48 (2019).
  12. Pahuja, M., Case, B. C., Molina, E. J., Waksman, R. Overview of the FDA's circulatory system devices panel virtual meeting on the TransMedics Organ Care System (OCS) Heart - portable extracorporeal heart perfusion and monitoring system. American Heart Journal. 247, 90-99 (2022).
  13. Jawitz, O. K., Devore, A. D., Patel, C. B., Bryner, B. S., Schroder, J. N. Expanding the donor pool: quantifying the potential impact of a portable organ-care system for expanded criteria heart donation. Journal of Cardiac Failure. 27 (12), 1462-1465 (2021).
  14. van Suylen, V., et al. Ex situ perfusion of hearts donated after euthanasia: a promising contribution to heart transplantation. Transplantation Direct. 7 (3), e676 (2021).
  15. Westhofen, S., et al. The heterotopic heart transplantation in mice as a small animal model to study mechanical unloading - Establishment of the procedure, perioperative management and postoperative scoring. PLoS One. 14 (4), e0214513 (2019).
  16. Qin, G., Jernryd, T., Sjoberg, S., Steen, S., Nilsson, J. Machine perfusion for human heart preservation: A systematic review. Transplant International. 35, 10258 (2022).
  17. Dang Van, S., Brunet, D., Akamkam, A., Decante, B., Guihaire, J. Functional assessment of the donor heart during ex situ perfusion: insights from pressure-volume loops and surface echocardiography. Journal of Visual Experiments. (188), e63945 (2022).
  18. Fu, X., Segiser, A., Carrel, T. P., Tevaearai Stahel, H. T., Most, H. Rat heterotopic heart transplantation model to investigate unloading-induced myocardial remodeling. Frontiers in Cardiovascular Medicine. 3, 34 (2016).
  19. Niimi, M. The technique for heterotopic cardiac transplantation in mice: experience of 3000 operations by one surgeon. The Journal of Heart and Lung Transplantation. 20 (10), 1123-1128 (2001).
  20. Qi, X., et al. The evaluation of constant coronary artery flow versus constant coronary perfusion pressure during normothermic ex-situ heart perfusion. The Journal of Heart and Lung Transplantation. 41 (12), 1738-1750 (2022).
  21. Okahara, S., et al. A novel blood viscosity estimation method based on pressure-flow characteristics of an oxygenator during cardiopulmonary bypass. Artificial Organs. 41 (3), 262-266 (2017).
  22. Quader, M., Torrado, J. F., Mangino, M. J., Toldo, S. Temperature and flow rate limit the optimal ex-vivo perfusion of the heart - an experimental study. Journal of Cardiothoracic Surgery. 15 (1), 180 (2020).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

194

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。