JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本手稿介绍了一组高度可重复的行为测试,以验证Angelman综合征小鼠模型。

摘要

本手稿描述了一系列行为测试,可用于表征已建立的AS小鼠模型中的Angelman综合征(AS)样表型。我们使用旋转学习范式、详细的步态分析和筑巢测试来检测和表征动物运动障碍。我们在空旷的场地和升高加上迷宫测试中测试动物的情绪,以及在尾部悬架测试中的影响。当AS小鼠在露天测试中进行测试时,应仔细解释结果,因为运动功能障碍会影响迷宫中的小鼠行为并改变活动评分。

所提出的行为测试的可重复性和有效性已经在具有不同敲除变体的几个独立的Uba3a小鼠系中得到了验证,使这组测试成为AS研究中出色的验证工具。具有相关结构和面部有效性的模型将值得进一步研究,以阐明疾病的病理生理学,并批准因果治疗的发展。

引言

安格曼综合征(AS)是一种罕见的神经发育疾病。AS最常见的遗传起源是母源性染色体的15q11-q13区域大量缺失,这在近74%的患者中发现1。该区域的缺失导致UBE3A的丢失,UBE3A是编码E3泛素连接酶的AS的主要致病基因。神经元中UBE3A基因的父系等位基因在称为印记的过程中被沉默。因此,该基因的父系印记仅允许母体在中枢神经系统(CNS)中表达2。因此,母源性染色体中的UBE3A基因缺失导致AS症状的发展。在人类中,AS在6个月左右出现,发育迟缓持续到所有发育阶段,并在受影响的个体中导致严重的衰弱症状3,4。该疾病的核心症状包括精细和粗大运动技能的缺乏,包括生涩的共济失调步态、严重的言语障碍和智力障碍。大约80%的AS患者还患有睡眠障碍和癫痫。迄今为止,唯一可用的治疗方法是对症药物,可减少癫痫发作并改善睡眠质量1。因此,开发具有可重复行为表型的稳健动物模型以及精细的表型分析对于阐明该疾病的病理生理机制和发现有效的药物和治疗方法至关重要。

影响中枢神经系统的人类疾病的复杂性要求模式生物具有可比的基因组、生理和行为。小鼠作为模式生物很受欢迎,因为它们的繁殖周期短,体积小,DNA修饰相对容易。1984年,Paul Willner提出了三个基本的疾病模型验证标准:结构,面部和预测有效性,用于确定模型的值5。简单地说,构建有效性反映了负责疾病发展的生物学机制,面部有效性概括了其症状,预测有效性描述了对治疗药物的模型反应。

为了坚持上述原则,我们选择了最常见的遗传病因,即包括UBE3A基因在内的母体15q11.2-13q位点的大缺失,以创建AS模型小鼠。我们使用CRISPR / Cas9技术删除了来自C57BL / 6N背景6的小鼠中跨越整个UBE3A基因的76,225 bp长区域,包括该基因的编码和非编码元件。然后我们培育动物以获得UBE3A + / −杂合小鼠。为了验证模型的面部,我们使用来自UBE3A + / - 雌性和野生型雄性的杂交动物来获得UBE3A + / - 后代(菌株命名为C57BL / 6NCrl-UBE3A / Ph,后来被分配为UBE3A mGenedel / +)并对照同窝。我们测试了他们的精细和粗大运动技能、情绪和情感,以概括核心AS症状。在之前的一篇文章中,我们还评估了动物的认知功能,因为AS患者也患有智力障碍6。然而,我们在UBE3AmGenedel / +小鼠中没有发现认知障碍,可能是由于测试动物的年龄很小7。后来对大约18周大的老年动物的检查显示,在位置偏好范式的逆转学习过程中,行为灵活性存在缺陷。但是,用于此分析的设备的复杂性需要一个单独的方法模块,此处不包括。

这里介绍的行为测试属于遗传研究中常见的表型工具,这要归功于它们的高预测价值和足够的构建有效性8,9,10我们使用这些测试通过以可重复的、与年龄无关的方式概括人类疾病的核心症状来验证AS的小鼠模型。在高架加迷宫和露天测试中评估动物的情绪。这两种测试都是基于接近-避免冲突,其中动物探索新环境以寻找食物、住所或交配机会,同时避免引起焦虑的隔间11。此外,开放现场测试用于测试小鼠的运动活动8。尾部悬架试验广泛用于抑郁症研究,以筛选小鼠敲除模型中新的抗抑郁药物或抑郁样表型12。该测试评估动物在不可避免的情况下随着时间的推移而产生的绝望。分别在旋转和DigiGait上测定运动学习和详细的步态特征。加速杆上的动物耐力表征其平衡和运动协调技能,而对小鼠步数模式的详细分析是对与许多神经生成性运动障碍相关的神经肌肉损伤的敏感评估13,14,15。巢穴撕碎测试是检测啮齿动物冲动行为的标准方法的一部分,并且由于它利用了自然的啮齿动物建筑行为,因此它表明了动物的健康状况16,17

实验组的规模是妥协的结果,以满足3R规则要求和有效利用群体育种性能。然而,为了获得统计功效,由于建立了足够数量的育种对,这些群体不少于10个个体。不幸的是,育种性能并不总是导致足够数量的动物。

研究方案

本研究中使用的所有动物和实验都经过伦理审查,并按照欧洲指令2010/63 / EU进行。该研究得到了捷克中央动物福利委员会的批准。将小鼠饲养在单独通风的笼子中,并保持在22±2°C的恒定温度下,光照/黑暗循环12小时。随意向小鼠提供食物 和水。将小鼠饲养在每个笼子中,每只动物三到六只。在测试之前,除称重外未进行任何其他处理。有关本协议中使用的所有材料和设备的详细信息,请参阅 材料表

1. 测试前和测试期间的一般注意事项

注意:为了清楚易懂,在描述各个测试之前会提供一般性评论。这适用于每个测试,但巢穴粉碎测试明显例外,该测试在房屋房间中进行,不需要使用任何实验设备。

  1. 在测试前,将动物安置在研究设施中至少 14 天,以尽量减少运输和环境变化造成的任何压力。
  2. 在测试前记录动物体重,因为体重是行为研究中常见的混淆因素。
  3. 从其住房室运输后,让动物在实验室中适应至少1小时,以尽量减少运输压力,每当发生这种运输时(即,下面描述的每个测试,除了巢穴切碎,这是在住房室进行的)。
  4. 用无毒的水基标记在尾巴上标记每只动物,以便在实验过程中快速识别。
  5. 在每次试验后进行测试期间,清除动物在实验装置中沉积的所有尿液和粪便。
  6. 在每个测试动物之前和之后用75%酒精擦拭所有实验装置。清洁可去除测试过程中沉积的嗅觉痕迹,并有助于保持稳定的实验条件。
  7. 尽可能小心地将动物从家笼运送到实验装置中,最好放在一个小的不透明容器中,然后自由释放它们,除非需要其他操作。
  8. 测试后将每只动物放入临时笼中,以防止它们影响家中笼子中未经测试的动物。
  9. 连续几天测试男性和女性。在测试过程中交替不同基因型的顺序,以平衡实验组之间不可预测的环境因素。
  10. 在所有动物经过测试后,将动物放回笼子里,然后将它们送回房屋房间。
  11. 在对动物进行重复测试的情况下,每次测试之间保持至少1天的间隔。

2. 行为测试

  1. 高架加迷宫 (EPM)
    注意:C57BL / 6NCrl和UBE3AmGenedel / + 小鼠品系的两性在9-12周龄时进行了本研究测试。在测试时,雄性动物的重量为22至36克,雌性为18至28克。
    1. 将加号形迷宫放在相机正下方的测试平台上。使用墙上的电位计,在照度计的帮助下将光强度设置为其中心的 70 勒克斯,并在调整过程中将其传感器放置在迷宫的中心。
    2. 双击 查看器 软件图标打开软件,然后单击 配置 选项卡左上角的图标加载 EPM 测试配置。从 "文件 "菜单加载 EPM 插件。使用计算机键盘填写动物信息-动物ID,基因型,性别和实验信息(日期,光强度)-在 "实验 "选项卡的相应字段中。检查区域的位置、张开的手臂和闭合的手臂是否正确配置。借助视觉控件和计算机鼠标,确保虚拟轮廓区域与视频预览上相应的 EPM 区域匹配。
    3. EPM是一种用于评估动物一般焦虑的测试,它基于接近 - 避免冲突。啮齿动物自然倾向于避开光线充足的未受保护区域(张开双臂),而倾向于更安全的区域(封闭的手臂)。由于这种全自动测试基于视频跟踪系统,因此软件会自动计算在每个区域花费的时间以及入口数量。
    4. 在测试过程中,通过工业红外光敏相机 视频中记录动物。允许软件在记录过程中实时检测动物的位置。在此之后,让软件自动评估动物的轨迹,以计算描述动物在迷宫中行为的所有参数。利用在抗焦虑性张开双臂上花费的时间和张开双臂就诊的百分比来评估动物的焦虑样行为水平。
      注意:定制迷宫由红外透光材料制成,放置在发光二极管(LED)红外光源平台上。
    5. 将鼠标光标放在 "采集 "选项卡左上角的箭头图标上。用手从家庭笼子中取出动物,并将其轻轻放在 EPM 的中心。通过左键单击计算机鼠标启动协议,并立即离开实验室。
    6. 在5分钟的自由迷宫探索后,记录协议完成后,在协议终止后出现的窗口中单击 "确定 "保存记录的数据,正确命名文件,然后单击 "保存"。通过 单击数据分析选项卡 左侧垂直面板上的图标,将结果导出到每个测试动物的.csv文件中以进行离线分析。
    7. 用手将动物从迷宫中取出,放入临时笼中。以相同的方式对所有动物进行测试。通过单击Elevated Plus迷宫插件的结果选项卡中的复制结果图标,将所有测试动物的结果复制到记事本文件以进行离线分析。
      注:软件和硬件可能有所不同,必须遵循相关手册。此外,实验设置(例如照明或计算机放置)可能会因动物设施的构造而异。
  2. 开放现场 (OF) 测试
    注意:露天测试评估动物的整体运动,这是由新环境中的探索行为触发的。此外,它通常用作筛查工具,以检测未受保护、光线充足的空间中的一般焦虑。这是一个全自动测试,它利用了视频跟踪系统,该系统在之前的测试中也使用过。
    1. 将四个 OF 测试盒放在相机正下方的测试平台上。使用墙上的电位计,在照度计的帮助下,在每个 OF 测试的中心将光强度设置为 200 勒克斯,在调整过程中将其传感器放置在每个框的中心。
    2. 双击 查看器 软件图标打开软件,然后单击 配置 选项卡左上角的图标加载 OF 测试的配置。使用计算机键盘在"实验"选项卡的相应字段中填写动物信息-动物ID,基因型,性别和 实验 信息(日期,光强度)。检查区域的位置(中心和外围)是否与 OF 测试盒匹配,并根据需要进行调整。借助视觉控件和计算机鼠标,确保虚拟轮廓的中心和外围区域与视频预览中相应的 OF 测试区域匹配。
    3. 在测试过程中,通过工业红外光敏相机 视频中记录动物。允许软件在记录过程中实时检测动物的位置,并自动评估动物的轨迹,以计算在 OF 测试框中描述动物行为的所有参数。步行距离、平均速度和休息时间是用于评估动物在新环境中活动的参数,而中心条目的数量和中心的持续时间描述了动物的焦虑样行为。
      注意:定制的迷宫由红外透光材料制成,放置在LED红外光源平台上。
    4. 将鼠标光标放在 "采集 "选项卡左上角的箭头图标上。用手从家庭笼子中取出四只动物,并将它们轻轻地放在每个 OF 测试盒的角落。通过左键单击计算机鼠标启动协议,然后立即离开实验室。
    5. 当协议在自由迷宫探索 10 分钟后完成时,通过在协议终止后出现的窗口中单击" 确定 "来保存数据,正确命名文件,然后单击 "保存"。通过单击" 数据分析 "选项卡左侧垂直面板上的图标,将结果导出到每个测试动物的.csv文件中以进行离线分析。
    6. 用手将动物从迷宫中取出,并将它们放入临时笼中。以相同的方式对所有动物进行测试。分析导出的数据。
      注:软件和硬件可能有所不同,必须遵循相关手册。此外,实验设置,如照明、迷宫数量或计算机放置,可能会因动物设施的构造而异。
  3. 尾部悬挂试验
    注意:使用自动尾部悬挂装置同时测试三只小鼠。
    1. 将房间的光强度保持在 100-120 勒克斯。
    2. 通过USB电缆TST系统与计算机连接。将 USB 加密狗插入计算机并通过双击 BIO-TST 软件图标启动软件。在全局下的设置选项卡中,将采集持续时间调整为 360 秒。在"实验"选项卡中,选择"新建受试者列表",然后按照打开的选项卡中的说明创建新的实验文件和新的测试对象列表。
    3. 通过单击"获取"选项卡中的"开始运行"|"继续"来开始运行。从底部开始,将单面胶带(例如透明医用胶带)缠绕在动物尾巴的 3/4 周围,为动物准备测试。
    4. 将悬挂钩穿过胶带并将动物悬挂在其上。通过单击每只动物的可视化位置下的 "开始" 图标,将其挂在钩子上后立即开始单独获取每只动物的数据,并在测试过程中连续观察动物。
    5. 完成第一组动物的采集后,点击 启动下一次运行,将动物从钩子上取下,从尾巴上取下胶带,用剪刀沿着尾巴小心地剪下胶带,然后将动物放入临时笼中。
    6. 用75%的酒精和纸巾清洁设备,并如上所述继续其余动物。在"分析"选项卡中,选择采集的最后 4 分钟进行分析,然后选择"分析"周期内的所有有效运行,单击"分析所选对象",选择所需的数据格式,然后单击"导出所选数据"以导出收集的数据以供进一步分析
      注意:测试持续6分钟。在前2分钟内,动物将剧烈挣扎,但是随着绝望反应在剩余的4分钟内变得普遍,因此在此期间的静止时间进行分析。软件和硬件可能有所不同,必须遵守相关手册。此外,设备本身可能会有所不同(例如,测试位置的数量)。
  4. 步态分析
    1. 打开跑步机,通过单击速度指示器旁边的 +- 符号,在设备面板上手动将皮带速度设置为 20 cm/s。顺时针转动旋钮打开设备指示灯。双击软件图标启动DigiGait Imager软件,并将快门速度设置为白化小鼠的100或黑/暗鼠标的门速度130
    2. 用手从家庭笼子中取出第一只动物,然后将其轻轻地放在跑步机皮带上。关上动物隔间的门。目视检查以确保动物的尾巴没有卡在门和框架之间。
    3. 在录制之前,允许鼠标探索跑步机皮带。通过将跑步机设置为慢行走速度~3秒,然后停止它,连续观察动物,确定动物能够进行测试。
    4. 按设备面板上的 "开始" 按钮启动皮带并记录大约 10 秒。确保可观察到至少 10-15 步的清晰流畅的运动。按下设备面板上的 停止 按钮停止皮带,然后用手将鼠标放回临时保持架。
    5. 通过单击"播放"并在"编辑"模式下使用可视控件查看记录,使用流畅的步骤筛选一系列图像的录制。通过手动将开始帧号和结束帧号写入相关字段(第一帧从帧#,最后一帧从到)来选择 10-15 个流畅的乐章。填写动物的信息 - 动物ID,出生日期,性别,体重,皮带速度和皮带角度 - 并在需要时在相关字段中进行注释。通过单击保存保存文件以供进一步分析。
    6. 用水清洁皮带,然后以同样的方式处理其余动物。选择 相机 继续记录下一次动物行走。获取所有动物的记录后,继续分析。
      注意:无法以皮带设定速度行走的动物不包括在测试之外。根据我们的经验,我们观察到年龄较大的动物(超过50周)在跑步机上行走时会遇到更多的困难,根据基因型的不同,频率在2%至50%之间变化。动物粪便被收集在跑步机前部或后部的托盘中。每次研究后清空托盘并用温肥皂水清洗。用湿布擦拭腰带。
    7. 基于对动物足迹视频记录的全自动分析进行步态分析。在 DigiGait分析 软件中调整数据。
      注意:步态分析不仅提供运动协调的测量,还提供基于动态步态信号分析的详细运动学描述,通过顺序步幅表示爪子放置的时间历史。软件会自动测量以下参数:摆动持续时间、摆动步幅持续时间百分比、制动持续时间、制动步幅持续时间百分比、推进持续时间、推进步幅百分比、站姿持续时间、步幅百分比、步幅持续时间、站姿制动百分比、站姿阶段推进百分比、摆动与站立比, 步幅、步幅频率、爪角度、爪角变异性、站立宽度、步距角、步幅长度变异性、步幅宽度变异性、步距角变异性、步幅长度变异系数、步幅宽度变异系数、步距角度变异系数、摆动持续时间变异系数、峰值站立时爪面积、峰值站立时爪面积变异性、 后肢共享站立持续时间, 共享站姿百分比, 左右后方站立持续时间之比, 步态对称性, 制动阶段与跑步机皮带接触的爪部区域最大变化率, 推进阶段与跑步机皮带接触的爪部区域最大变化率, tau推进, 爪重叠距离, 爪子位置定位、共济失调系数、中线距离、轴距和爪子阻力。该软件允许对步进迹线噪声进行小幅校正,这应在统计分析之前完成。软件和硬件可能有所不同,必须遵守相关手册。
  5. 罗塔罗德
    注意:旋转测试用于评估啮齿动物运动功能 - 平衡和运动协调。该测试要求小鼠在固定直径(5厘米)的旋转杆上行走,旋转在给定的时间段(5分钟)内加速,直到动物不能再停留。
    1. 通过按下设备上的开/关开关打开旋转设备,并通过双击 Rod 软件图标启动软件。在"文件"选项卡中初始化一个新文件,并以适当的名称保存该文件。在"设置"窗口中,填写实验详细信息,例如日期、用户名和任何最终注释。将速度配置文件设置为 300 秒,将初始速度设置为 4 rpm,将终端速度设置为 40 rpm
    2. 为动物字段中的测试动物准备时间表,并将每只 动物 分配到其在杆上的位置。这些位置没有在软件中明确指示,但它们对应于列表行;例如,第一行表示杆的第一个位置,第五行表示杆的第五个位置,依此类推。请记住在实验组之间平衡每个杆的位置。
      注意:可以同时测试五只动物。
    3. 通过单击关闭关闭设置面板,并通过单击测量打开测量面板。 通过单击开始/停止4 rpm 的速度开始杆的初始旋转,并将前五只动物放在指定的位置。当所有动物都在杆上时,通过单击开始配置文件开始测试协议,杆将在 40 分钟内逐渐加速到 5 rpm。如果动物从杆上掉下来,请在协议开始之前将其放回杆上。
      注意:动物通常不会在杆上停留足够长的时间,以便在第一次尝试时将所有小鼠一次放在杆上。在开始时以恒定的旋转速度将动物放在杆上时,重要的是要有耐心。测试的目的不是确定动物在固定旋转速度下在杆上的耐力,而是找出动物无法保持在杆上的速度。杆的速度与停留在其上的延迟成正比;因此,它被用来表达动物的平衡。
    4. 在所有动物从杆上掉下来或经过 5 分钟后,将动物移到临时笼子里。清除所有动物粪便,并用酒精清洁杆和托盘。
    5. 单击"动物"->以相同的方式继续处理下一组动物。测试所有动物后,单击关闭关闭测量窗口,然后单击显示以显示收集的数据。通过单击导出CSV.csv以文件格式导出获取的数据以供进一步分析。
    6. 在杆上测试每只动物三次,间隔15分钟。使用三个试验的延迟平均值进行进一步的统计分析。通过连续 5 天重复测试来评估动物的运动学习。
      注:软件和硬件可能有所不同,必须遵循相关手册。此外,设备本身可能会有所不同,例如,测试位置的数量、整体结构和杆尺寸。
  6. 巢穴碎巢建筑
    1. 将动物用标准设备(床上用品、食物网和供水)将动物分成单个聚碳酸酯小鼠笼中 1 周。用镊子取大约12克棉巢,用秤手动记录其重量,并将其随机放入笼子中,但与供水相反。将装有动物的笼子放回宿舍。
    2. 在接下来的 4 天内,每天在同一时间使用秤手动称量每个巢穴。在纸上或预制电子表格中记录重量。确保每个巢穴在称重时都是干燥的;如果没有,请在加热垫上干燥,并在老鼠筑巢的地方同时将所有巢穴放回指定的笼子中。如果巢穴被撕成几部分,请称量最大的部分。
    3. 对于数据分析,表示每天巢穴重量相对于初始重量的递减,并将其表示为所用材料的百分比。
      注意:将雄性带回公共笼子可能会导致动物的攻击性和不必要的伤害增加。因此,应将巢穴切碎测试安排在测试方案结束时,以避免损害动物福利。

结果

高架加迷宫和露天测试
EPM和OF测试使用啮齿动物的自然倾向来探索新环境18,19。探索受到接近-避免冲突的支配,啮齿动物在探索新环境和避免可能的危险之间做出选择。动物探索未知的地方,寻找庇护所、社会接触或觅食。然而,新的地方可能涉及风险因素,如捕食者或竞争对手。OF 测试和 EPM 都由安全和危险隔间组成 - OF 测试中的外围?...

讨论

在不同鼠菌株中创建的AS模型通常通过动物情绪状态,运动功能和认知能力的测试进行验证,以促进与人类症状的比较31,32。AS模型中的运动缺陷是实验室中最一致的发现,其次是突变体的情绪状态不变和筑巢困难31,32,33。相比之下,认知障碍要么轻微,要么不存在7,31,33。

披露声明

作者没有利益冲突需要披露。

致谢

这项研究得到了捷克科学院RVO 68378050,LM2018126 MEYS CR提供的捷克表型基因组学中心,OP RDE CZ.02.1.01 / 0.0 / 0.0/16_013 / 0001789(捷克表型基因组学中心的升级:MEYS和ESIF向翻译研究发展),OP rde CZ.02.1.01 / 0.0 / 0.0 / 18_046 / 0015861(MEYS和ESIF提供的CCP基础设施升级II)和OP RDI CZ.1.05 / 2.1.00 / 19.0395(MEYS和ERDF转基因模型的更高质量和容量)。此外,这项研究还得到了捷克共和国(https://asgent.org/)非政府组织"基因治疗协会(ASGENT)"和捷克共和国教育、青年和体育部提供的捷克表型基因组学中心的资助LM2023036。

材料

NameCompanyCatalog NumberComments
Cages, individually ventilatedTechniplast
DigiGaitMouse Specifics, Inc., 2 Central Street Level
Unit 110
Framingham, MA 01701, USA
Equipment was tendered, no catalogue  number was provided, nor could be find on company's web siteDetailed analysis of mouse gait, hardware and software provided. 
FDA Nestlet squaresDatesand Ltd., 7 Horsfield Way, Bredbury, Stockport SK6, UKMaterial was bought from Velaz vendor via direct email request. Velaz do not provide any catalogue no.Cotton nestlets for nest building test. Nestlet discription: 2-3 g each, with diameter around 5 x 5 x 0.5cm.
Mouse chowAltramion
RotarodTSE Systems GmbH, Barbara-McClintock-Str.4
12489 Berlin, Germany
Equipment was tendered, no catalogue  number was provided, nor could be find on company's web siteRotarod for 5 mice, hardware and software provided. Drum dimensions: Diameter: 30 mm, width per lane: 50 mm, falling distance 147 mm.
Tail Suspension TestBioseb, In Vivo Research Instruments, 13845 Vitrolles
FRANCE
Reference: BIO-TST5Fully automated equipment for immobility time evaluation of 3 mice hanged by tail, hardware and software provided
Transpore medical tapeMedical M, Ltd.P-AIRO1291The tape used to attach an animal to the hook by its tail.
Viewer - Video Tracking SystemBiobserve GmbH, Wilhelmstr. 23 A
53111 Bonn, Germany
Equipment with software were tendered, no catalogue  number was provided, nor could be find on company's web siteSoftware with custom made hardware: maze, IR base, IR sensitive cameras. Custom-made OF dimensions: 42 x 42 cm area, 49 cm high wall, central zone area: 39 cm2. A custom-made EPM was elevated 50 cm above the floor, with an open arm 79 cm long,  9 cm wide, and closed arm 77 cm long, 7.6 cm wide. 

参考文献

  1. Kalsner, L., Chamberlain, S. J. Prader-Willi, Angelman, and 15q11-q13 duplication syndromes. Pediatric Clinics of North America. 62 (3), 587-606 (2015).
  2. Yamasaki, K., et al. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Human Molecular Genetics. 12 (8), 837-847 (2003).
  3. Clayton-Smith, J., Laan, L. Angelman syndrome: a review of the clinical and genetic aspects. Journal of Medical Genetics. 40 (2), 87-95 (2003).
  4. Jolleff, N., Ryan, M. M. Communication development in Angelman's syndrome. Archives of Disease in Childhood. 69 (1), 148-150 (1993).
  5. Willner, P. The validity of animal models of depression. Psychopharmacology. 83 (1), 1-16 (1984).
  6. Syding, L. A., et al. Generation and characterization of a novel Angelman syndrome mouse model with a full deletion of the Ube3a gene. Cells. 11 (18), 2815 (2022).
  7. Huang, H. -. S., et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behavioural Brain Research. 243, 79-90 (2013).
  8. Choleris, E., Thomas, A. W., Kavaliers, M., Prato, F. S. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neuroscience and Biobehavioral Reviews. 25 (3), 235-260 (2001).
  9. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neuroscience and Biobehavioral Reviews. 29 (4-5), 571-625 (2005).
  10. Walf, A. A., Frye, C. A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols. 2 (2), 322-328 (2007).
  11. Carola, V., D'Olimpio, F., Brunamonti, E., Mangia, F., Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research. 134 (1-2), 49-57 (2002).
  12. Yan, H. -. C., Cao, X., Das, M., Zhu, X. -. H., Gao, T. -. M. Behavioral animal models of depression. Neuroscience Bulletin. 26 (4), 327-337 (2010).
  13. Preisig, D. F., et al. High-speed video gait analysis reveals early and characteristic locomotor phenotypes in mouse models of neurodegenerative movement disorders. Behavioural Brain Research. 311, 340-353 (2016).
  14. Knippenberg, S., Thau, N., Dengler, R., Petri, S. Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Behavioural Brain Research. 213 (1), 82-87 (2010).
  15. Farr, T. D., Liu, L., Colwell, K. L., Whishaw, I. Q., Metz, G. A. Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. Journal of Neuroscience Methods. 153 (1), 104-113 (2006).
  16. Jirkof, P. Burrowing and nest building behavior as indicators of well-being in mice. Journal of Neuroscience Methods. 234, 139-146 (2014).
  17. Wulaer, B., et al. Repetitive and compulsive-like behaviors lead to cognitive dysfunction in Disc1Δ2-3/Δ2-3 mice. Genes, Brain, and Behavior. 17 (8), 12478 (2018).
  18. Glickman, S. E., Hartz, K. E. Exploratory behavior in several species of rodents. Journal of Comparative and Physiological Psychology. 58, 101-104 (1964).
  19. La-Vu, M., Tobias, B. C., Schuette, P. J., Adhikari, A. To approach or avoid: an introductory overview of the study of anxiety using rodent assays. Frontiers in Behavioral Neuroscience. 14, 145 (2020).
  20. Karolewicz, B., Paul, I. A. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. European Journal of Pharmacology. 415 (2-3), 197-201 (2001).
  21. Liu, X., Gershenfeld, H. K. Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biological Psychiatry. 49 (7), 575-581 (2001).
  22. Dunham, N. W., Miya, T. S. A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association. 46 (3), 208-209 (1957).
  23. Dorman, C. W., Krug, H. E., Frizelle, S. P., Funkenbusch, S., Mahowald, M. L. A comparison of DigiGait and TreadScan imaging systems: assessment of pain using gait analysis in murine monoarthritis. Journal of Pain Research. 7, 25-35 (2013).
  24. Stroobants, S., Gantois, I., Pooters, T., D'Hooge, R. Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behavioural Brain Research. 241, 32-37 (2013).
  25. Vandeputte, C., et al. Automated quantitative gait analysis in animal models of movement disorders. BMC Neuroscience. 11, 92 (2010).
  26. Amende, I., et al. Gait dynamics in mouse models of Parkinson's disease and Huntington's disease. Journal of Neuroengineering and Rehabilitation. 2, 20 (2005).
  27. Hampton, T. G., et al. Gait disturbances in dystrophic hamsters. Journal of Biomedicine & Biotechnology. 2011, 235354 (2011).
  28. Vinsant, S., et al. Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part I, background and methods. Brain and Behavior. 3 (4), 335-350 (2013).
  29. Li, X., Morrow, D., Witkin, J. M. Decreases in nestlet shredding of mice by serotonin uptake inhibitors: comparison with marble burying. Life Sciences. 78 (17), 1933-1939 (2006).
  30. Murphy, M., et al. Chronic adolescent Δ9-tetrahydrocannabinol treatment of male mice leads to long-term cognitive and behavioral dysfunction, which are prevented by concurrent cannabidiol treatment. Cannabis and Cannabinoid Research. 2 (1), 235-246 (2017).
  31. Sonzogni, M., et al. A behavioral test battery for mouse models of Angelman syndrome: A powerful tool for testing drugs and novel Ube3a mutants. Molecular Autism. 9, 47 (2018).
  32. Dodge, A., et al. Generation of a novel rat model of Angelman syndrome with a complete Ube3a gene deletion. Autism Research. 13 (3), 397-409 (2020).
  33. Born, H. A., et al. Strain-dependence of the Angelman syndrome phenotypes in Ube3a maternal deficiency mice. Scientific Reports. 7 (1), 8451 (2017).
  34. File, S. E., Mabbutt, P. S., Hitchcott, P. K. Characterisation of the phenomenon of "one-trial tolerance" to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacology. 102 (1), 98-101 (1990).
  35. Liu, N., et al. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. The European Journal of Neuroscience. 52 (1), 2694-2704 (2020).
  36. Ueno, H., et al. Effects of repetitive gentle handling of male C57BL/6NCrl mice on comparative behavioural test results. Science Reports. 10 (1), 3509 (2020).
  37. Rodgers, R. J., Dalvi, A. Anxiety, defence and the elevated plus-maze. Neuroscience and Biobehavioral Reviews. 21 (6), 801-810 (1997).
  38. Deacon, R. M. J., Penny, C., Rawlins, J. N. P. Effects of medial prefrontal cortex cytotoxic lesions in mice. Behavioural Brain Research. 139 (1-2), 139-155 (2003).
  39. Fernagut, P. O., Diguet, E., Labattu, B., Tison, F. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. Journal of Neuroscience Methods. 113 (2), 123-130 (2002).
  40. Wooley, C. M., Xing, S., Burgess, R. W., Cox, G. A., Seburn, K. L. Age, experience and genetic background influence treadmill walking in mice. Physiology & Behavior. 96 (2), 350-361 (2009).
  41. Lakes, E. H., Allen, K. D. Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations. Osteoarthritis and Cartilage. 24 (11), 1837-1849 (2016).
  42. Deuis, J. R., Dvorakova, L. S., Vetter, I. Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience. 10, 284 (2017).
  43. Tanas, J. K., et al. Multidimensional analysis of behavior predicts genotype with high accuracy in a mouse model of Angelman syndrome. Translational Psychiatry. 12 (1), 426 (2022).
  44. Silva-Santos, S., et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. The Journal of Clinical Investigation. 125 (5), 2069-2076 (2015).
  45. Milazzo, C., et al. Antisense oligonucleotide treatment rescues UBE3A expression and multiple phenotypes of an Angelman syndrome mouse model. JCI Insight. 6 (15), e145991 (2021).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

200 UBE3A C57BL 6N

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。