JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们描述了在半自动、高通量筛选形式中使用基于荧光素酶的报告基因测定的详细方案。

摘要

越来越多的证据表明,高自噬通量与肿瘤进展和癌症治疗耐药性有关。测定单个自噬蛋白是针对该途径的治疗策略的先决条件。抑制自噬蛋白酶ATG4B已被证明可以增加总生存期,这表明ATG4B可能是癌症治疗的潜在药物靶点。我们的实验室开发了一种基于荧光素酶的选择性检测方法,用于监测细胞中的ATG4B活性。对于该测定,ATG4B 的底物 LC3B 在 C 末端用来自海洋桡足类 Gaussia princeps (GLUC) 的可分泌荧光素酶标记。该报告基因与肌动蛋白细胞骨架相连,因此在未解脱时将其保留在细胞的细胞质中。ATG4B 介导的裂解导致非常规分泌释放 GLUC,然后可以通过从细胞培养物中收获上清液作为细胞 ATG4B 活性的相关性来监测。本文介绍了这种基于荧光素酶的检测方法对自动化高通量筛选的适应。我们描述了细胞ATG4B活性的示例性高通量分析的工作流程和优化。

引言

自噬是一种保守的代谢过程,它允许细胞保持细胞内稳态,并通过溶酶体降解老化、有缺陷或不必要的细胞内容物来应对压力 1,2,3在某些病理生理条件下,该过程是细胞对营养和缺氧的关键反应,导致循环的营养物质和脂质,使细胞能够适应其代谢需求2,3,4自噬也被确定为与多种疾病相关的细胞应激反应,例如神经退行性疾病、病原体感染和各种类型的癌症。自噬在癌症中的功能很复杂,取决于肿瘤的类型、分期和状态。它可以通过受损细胞的自噬降解来抑制肿瘤发生,但也可以通过在缺氧、营养剥夺和细胞毒性损伤等应激条件下提高细胞存活率来促进晚期肿瘤的存活 2,4,5,6。

几项研究表明,自噬抑制作为一种抗癌策略是有益的。因此,抑制关键步骤,如自噬体形成或其与溶酶体的融合,可能是控制癌症的有效方法2,4,5,6。越来越多的证据表明,ATG4B 参与某些病理状况,并且它作为潜在的抗癌靶点而受到关注 2,3,4例如,观察到结直肠癌细胞和人表皮生长因子受体 2 (HER2) 阳性乳腺癌细胞的 ATG4B 表达水平明显高于邻近的正常细胞 2,4。在前列腺癌细胞中,ATG4B 的抑制导致细胞系对化疗和放疗的特异性易感性7。最近,有强有力的证据表明胰腺导管腺癌 (PDAC) 特别容易受到 ATG4B 抑制的影响。例如,在基因工程小鼠模型中,研究表明 ATG4B 功能的间歇性丧失会减少 PDAC 肿瘤生长并增加生存率 3,4。总体而言,ATG4B 在某些癌症类型中高度过表达,与肿瘤进展有关,并与癌症治疗耐药性有关 2,4,8

哺乳动物中的 ATG4 半胱氨酸蛋白酶有四个家族成员,ATG4A-ATG4D。这些蛋白对 LC3/GABARAP (ATG8) 蛋白家族 9,10,11 表现出一定的靶向选择性,并且可能具有与其蛋白酶活性无关的其他功能12,13此外,ATG4 还调节一种新型的翻译后修饰,即蛋白质的 ATG8 基化11,12。虽然ATG4B及其主要底物LC3B是研究最广泛的,但正在出现一张图片,表明每个亚家族成员在调节自噬和非自噬过程中都具有复杂的作用。通过磷酸化、乙酰化、糖基化和亚硝基化调节 ATG4B 活性的翻译后修饰复杂网络进一步证实了这一点 9,10,11,12,13。

几种已知的ATG4B抑制剂已发表2,4,14,15。虽然这些适合作为研究工具,但它们的药效学特征、选择性或效力尚未阻止它们作为临床前候选药物的开发4,16。总体而言,迫切需要确定更有效和更具选择性的化合物。通常,这些化合物是蛋白质功能的良好生化抑制剂,但它们在基于细胞的测定中的功效很差。有多种检测方法可以监测 ATG4B 活性,包括生化方法和基于细胞的检测4。我们之前开发了一种简单的、基于发光的高通量测定法,用于监测细胞中的 ATG4B 活性 8,17。该测定利用来自高斯 (GLUC) 的荧光素酶蛋白,该蛋白在细胞外环境中稳定且具有活性,并且可以响应 ATG4B 蛋白水解活性从细胞中诱导释放18,19

在该报告基因构建体中,dNGLUC与细胞的肌动蛋白细胞骨架相连。蛋白酶特异性接头可以在β-肌动蛋白锚和 dNGLUC 之间引入,使分泌依赖于接头的切割。我们使用 β-肌动蛋白和 dNGLUC 之间的 LC3B 的全长开放阅读框,以便能够监测 LC3B 切割171819。尽管 dNGLUC 的分泌机制知之甚少,但它对监测 ATG4B 活性具有特异性,不像 ATG5 敲除细胞中那样依赖于整体自噬,并且由不需要经典信号肽的非常规机制介导 4,18,19。我们已经成功地使用这种报告基因筛选了小分子和siRNA文库,并鉴定了ATG4B活性的新型调节因子,如Akt蛋白激酶8。本文描述了在半自动、高通量筛选形式中使用该荧光素酶报告基因的详细方案。

研究方案

注:测定过程如图 1所示。有关本协议中使用的所有材料、试剂和设备的详细信息,请参阅 材料表

1. 逆转录病毒生产

注:编码ActinLC3dNGLUC的质粒是pMOWS-ActinLC3dNGLUC20。使用低传代数的细胞来生产高滴度病毒(理想情况下小于 P20)。

  1. 在37°C下,在5%CO2 气氛中,在补充有10%胎牛血清(FBS)和1%青霉素/链霉素(P / S)的Dulbecco改良的Eagle培养基(DMEM)中培养HEK293T细胞,直到它们在80%-90%汇合后接种进行转染。
  2. 转染前一天,将细胞以 1 × 10个细胞/ 孔的密度接种到 6 孔板中,溶于 2 mL/孔的完全生长培养基中。将板在气氛为5%CO2的加湿培养箱中孵育过夜。
    注:如果使用基于脂质体的转染试剂,请遵循制造商的说明。该方案描述了使用非脂质体试剂。在开始转染之前,让 DNA 转染试剂、DNA 和培养基平衡至室温(~15 分钟)。
  3. 对于每次转染,向 1.5 mL 微量离心管中加入 200 μL 无血清培养基。在每个试管中,加入以下量的质粒:1,000ng pMOWS-ActinLC3dNGLUC;900 ng GagPol;100 ng VSV-G。
    注:此处列出的质粒量和培养基体积适用于12孔板。如果使用不同的板类型,调整培养基体积和质粒量,以达到 5 ng/μL 转印质粒、4.5 ng/μL 包装质粒和 0.5 ng/μL 包膜质粒的最终浓度。使用任何含有gag和pol表达基因的包装质粒,以及任何含有VSV-G表达基因的包膜质粒。
  4. 涡旋DNA转染试剂瓶30秒。将 4 μL 转染试剂直接移液到含有稀释 DNA 的培养基中。轻轻倾斜试管,轻轻混合。
    注意: 请勿用尖端接触塑料管壁。不要上下移液或涡旋。
  5. 将反应在室温下孵育15分钟。
  6. 孵育反应时,从 6 孔板中取出旧培养基,并用 2 mL/孔新鲜无血清培养基代替。
  7. 以逐滴方式将每种转染复合物添加到每个孔中。
  8. 轻轻摇晃或旋转板,以确保在整个孔表面均匀分布。
  9. 将板在37°C下在具有5%CO2气氛的加湿培养箱中孵育过夜。
  10. 24小时后,用新鲜的完全培养基(2mL /孔)替换旧培养基,并将细胞放回加湿的培养箱中,在5%CO2 的气氛下放置72小时。
  11. 72小时后,在50mL锥形管中收获上清液,并在4°C下以4,000× g 离心10分钟以除去死细胞和碎片。为了进一步纯化,使用一个大的 60 mL 注射器使上清液通过 0.20 μm 过滤器。立即制备300μL的一次性等分试样并储存在-80°C。
    注意: 避免冻融循环以保持最大的产品活性。

2. 逆转录病毒转导

  1. 在转导细胞的前一天,将靶细胞以中等密度(PANC1,1×10,5个细胞/孔)接种在12孔板中,在补充有10%FBS和1%P / S的1mL /孔培养基中,将板在37°C下在5%CO2气氛的潮湿培养箱中孵育过夜。
    注意:必须提前确定最佳细胞密度,因为不同的细胞类型具有不同的附着能力。理想情况下,使用细胞密度来获得 40%-50% 的汇合度。
  2. 从-80°C冰箱中取出冷冻的逆转录病毒等分试样,并在每次使用前在冰上解冻。
    注意:不要重新冷冻未使用的等分试样。
  3. 在 50 mL 锥形管中,制备终浓度为 8 μg/mL 的病毒上清液和聚凝胺的混合物。
    注:后续体积适用于最终体积为 500 μL/孔的 12 孔板的转导。最终的病毒上清液体积可以通过在聚凝胺存在下测试一系列病毒稀释度来估计。根据所需的转基因表达水平和所用容器的大小,可以使用更高或更低的稀释度。
  4. 从 12 孔板中取出旧培养基,并向每个孔中加入 500 μL 混合物。将细胞与病毒上清液在37°C下在具有5%CO2气氛的潮湿培养箱中孵育过夜。
    注意:保留两个孔,其中有完全培养基(无病毒上清液),用作选择的对照。
  5. 用新鲜的完全生长培养基(1 mL/孔)替换含病毒的培养基。将细胞放回加湿的培养箱中,气氛为5%CO248 小时。

3. 集中种群选择和维护

  1. 用选择培养基(终浓度为1μg/ mL的完全生长培养基)代替生长培养基。监测细胞的生长,每2-3天更换一次选择培养基。在汇合处,扩充到 6 孔培养皿中,然后扩充到直径为 10 cm 的组织培养皿中。
  2. 将细胞保持在选择培养基中至少与对照(未转导)细胞完全死亡所需的时间一样长。
    注:为了获得成功的结果,建议在开始实验项目之前确定嘌呤霉素的最佳浓度。为此,生成嘌呤霉素杀伤曲线以确定在 3 至 10 天之间杀死未转导细胞所需的最低浓度。
  3. 一旦细胞在选择培养基中生长,在完全生长培养基上扩增细胞并冷冻实验项目的储备等分试样。
    注意:记录传代数,避免使用传代数大于 5 的冷冻种群。在进行检测之前,定期检查支原体污染。理想情况下,在每次测定前使用新鲜细胞批次,以获得荧光素酶的最大信号。
  4. 将细胞保持在选择培养基中,并在测定前一天接种足够的细胞以达到所需的密度。

4.复合添加

注:Selleckchem 小分子库由大约 4,000 种化合物组成,这些化合物在 50 个 96 孔板中以 10 mM 的储备浓度排列在 50 个 96 孔板中,储备浓度为 10 mM。

  1. 将 30 μL 化合物分装到与纳米级声学液体分配器兼容的源板的适当孔中。使用 384 孔聚丙烯板(384PP 板)。保持这些板密封并储存在-20°C。
    注:此处描述的筛选方案是每天总共 10 个测定板;使用10μM的固定浓度作为最终测定浓度,孵育期为24小时。
  2. 在室温下解冻化合物库板。
    注意: 确保板完全解冻并平衡至室温。整个板的温度梯度可能会影响液体处理。
  3. 使用纳米级声波液体分配器将 50 nL/孔分配到 384 孔测定板中。
    注意: 确保程序中选定的源板和目的板与用于此步骤的板匹配。
  4. 在电子表格上创建点胶程序。
  5. 打开软件。
  6. 打开一个新协议。从"协议"选项卡中,选择以下选项:样品板规格384PP;样品板类型,384PP_DMSO2;和目的板类型CellCarrier-384 Ultra PN图2A)。
  7. "选择列表"下,选择导入选项(图2B)以导入包含分配程序的电子表格(图2C)。
  8. 选择"运行协议"选项(图2D),验证显示的信息是否正确,然后单击"运行"。
  9. 在名为"运行状态"的新窗口(图2E)上,单击"开始",然后按照提示窗口中显示的步骤进行操作(图2F,G)。

5. 细胞接种

  1. 从细胞培养瓶或细胞培养培养皿中胰蛋白酶消化细胞,并通过添加含FBS的培养基中和胰蛋白酶。
  2. 将细胞悬液转移到 50 mL 锥形管中,并在室温下以 390 × g 离心 5 分钟。然后,轻轻除去上清液,将细胞沉淀重悬于 10 mL 完全生长培养基中。
  3. 进行细胞计数。
  4. 在 230 mL 完全培养基中用 4.6 × 107 个细胞制备细胞悬液。
    注:该体积和细胞密度适用于 10x 384 孔测定板加上两个 384 孔板的死体积。
  5. 将 50 μL 细胞悬液分配到 384 孔测定板的每个孔中,在第 4 节中制备。
    注意:细胞接种可以手动完成,也可以使用散装分配器完成。
  6. 将细胞在37°C下在具有5%CO2 气氛的湿润培养箱中孵育24小时。

6. 收获细胞上清液

注意: 此处使用的液体处理机器人平台使用多通道臂执行液体处理,用于 96 个吸头。如果没有可用的液体处理自动化,则可以使用多通道移液器将方案调整为低通量格式。

  1. 配置实验室自动化工作站的甲板, 如图 3 所示。
  2. 将一次性 96 吸头堆栈放在位置 P1 上(图 3A)。
    注意: 每个 96 吸头堆栈由八个一次性支架组成。当使用多通道臂进行 96 个吸头时,384 孔板分为四个象限。因此,每个吸头堆栈足以将上清液从两个测定板转移到两个空的纯黑色 384 孔板中。每次运行两块板后,需要更换整个吸头组。
  3. 将测定板放在位置 P2 P4 上(图3A)。
  4. 将空的纯黑色384孔板放在 P3 P5 位置(图3A)。
    注:这种灵活且功能强大的机器人平台已适用于该测定,并编写了一个特殊程序(图3B)。
  5. 从位置 P1 获取提示。
  6. 从位置 P2 的板中吸出 10 μL 上清液,然后转移到位置 P3 的空的纯黑色板中。
    注意:吸头应放置在孔内适当的深度,以吸出上清液,而不会干扰孔底部的细胞单层。
  7. 将吸头放入位置 P6 的废物中(图 3A)。
  8. 对位置P2上的板的剩余孔重复步骤6.5-6.7,然后重复相同的步骤将上清液从位置P4转移到位置P5
    注意:确保收集上清液并在相应的孔中分配到空的纯黑色板中(图3C,D)。由于分泌的dNGLUC在细胞培养基中非常稳定,因此板可以密封并在4°C下在黑暗中保存长达7天。

7. 荧光素酶测定

注:报告器中使用的 dNGLUC 表现出信号快速衰减的闪光动力学。由于加入底物(腔肠素)后发光衰减迅速,应设置酶标仪测量上清液中的发光信号;将底物注入孔中,几秒钟后读取孔。因此,请使用能够监测发光并配备底物进样器的酶标仪,以确保所有样品的进样和读取步骤之间的时间是均匀的。读板器上使用的设置如图 4 所示。

  1. 在酸化甲醇(10 μL 3 M HCl 至 1 mL 甲醇)中制备天然腔肠素作为 1 mg/mL 储备溶液。
    注意:请遵循当地有关在实验室处理甲醇的健康和安全指南,并避免与皮肤接触。在开始测定之前准备新鲜的工作底物溶液。
  2. 初始化喷油器泵(图5A)。
  3. 用去离子水冲洗管道(图5B-D)。
  4. 用甲醇冲洗管道。
  5. 冲洗管路时,通过以 1:100 的比例稀释底物来制备工作底物溶液(对于一个 384 孔板,将 220 μL 从底物储备溶液中加入 21.8 mL 的 1x 磷酸盐缓冲盐水 [PBS] 中)。
  6. 用基板工作溶液冲洗管道(图5B-D)。
  7. 将板装入读数器,然后使用 图 4 中描述的设置开始测量。
  8. 对所有测定板重复步骤7.6-7.7。
  9. 完成所有测定板后,用甲醇冲洗管道。
  10. 用去离子水冲洗管道。
    注:在此步骤结束时,获得与细胞ATG4B活性相关的原始荧光素酶值。为了对细胞数进行归一化,接下来的步骤是必要的,即通过荧光显微镜计数每个孔中的细胞数。

8. 细胞固定和染色

注意:此步骤可以借助多通道移液器或使用散装分液器手动执行。

  1. 用4%多聚甲醛(在1x PBS中)固定细胞15分钟。
    注意:请遵循当地有关在实验室处理多聚甲醛的健康和安全指南,并避免与皮肤接触。如果可能,请在安全罩中执行此步骤。
  2. 用1x PBS洗涤三次。
  3. 用 Hoechst 33342 在 1x PBS 中以 1:5,000 稀释的细胞核染色 15 分钟。
  4. 用1x PBS洗涤三次。

9. 图像采集

注意: 使用自动显微镜进行图像采集。作为确定细胞数量的图像采集的替代方法,也可以确定细胞内荧光素酶活性。关于是否归一化为细胞数或细胞内荧光素酶活性,有优点和缺点,下面将讨论。我们发现,与确定细胞内荧光素酶值相比,确定细胞数的侵入性较小,并且变异性更低。

  1. 启动显微镜操作软件(图6)。
  2. "设置 "选项卡中,选择正确的预定义板类型。如果未预设板类型,请手动输入板尺寸。
  3. 通过单击" 弹出 并加载"选项将板 加载 到显微镜中。
  4. 然后,选择 20x Air(数值孔径 [NA]:0.4) 物镜。
    注意: 确保物 镜环 设置为正确的值,以便对不同的板类型进行正确聚焦。
  5. 在"通道选择"下,选择"Hoechst 33342"。
    注意: 时间、功率和高度的通道设置必须根据所使用的板类型进行优化。
  6. "定义布局"(Define Layout) 上,从孔中选择所有孔,从孔中选择四个字段。
  7. "联机作业"中,选择相应的文件夹以将数据传输到分析软件。

10. 图像分析

注:任何图像分析软件都可用于从采集的图像中分割和计数细胞核。在这里,我们描述了使用与多个自动显微镜文件兼容的特定在线软件的步骤。

  1. 启动图像分析软件。
  2. 转到"图像 分析 "选项卡以开始图像分割(图7A)。
  3. Input Image 选项卡中,单击 + 号以添加新的构建块(图 7A)。
  4. 从列表中选择 "查找原子核 "选项(图7A),然后选择" Hoechst 33342 "作为 通道 选项(图7B)。
  5. 目视检查图像上的分割对象,选择最准确的分割方法。
    注意:对于此实验,我们使用了方法C(图7C)。每个方法选项都有子类别,可以调整这些子类别以获得最佳分割。
  6. 然后,单击 "定义结果 "选项卡(图7C)并选择" 标准输出 "作为 "方法 "选项。
  7. 从子类别中,选择 对象核数 对象计数 图7C)。
  8. 使用"将分析保存到磁盘"或 "将 分析保存 到数据库"选项保存分析 管道。
  9. "批量 分析"选项卡下,从树中选择要分析的数据。
  10. "方法"下,选择在步骤 10.8 中保存的分析管道。
    注: 也可以从参考软件外部上传脚本文件或上传保存到数据库的现有分析。
  11. 单击 "运行 分析"开始分析(图7D)。在此工作流程结束时,将生成两个数据集:来自上清液的原始荧光素酶值和每个孔中的细胞数。使用两者来归一化每个细胞的荧光素酶值。

结果

在之前的出版物8 中,我们成功地使用该测定法筛选了小分子和 siRNA 文库,并鉴定了 ATG4B 的新调节因子。在这里,我们以半自动、高通量筛选的形式描述了该荧光素酶报告基因的方案和代表性结果。图 8 显示了细胞核和发光的原始数据分析示例。发光测量的典型结果如图8A所示。在第 1 列中可以看到来自 DMSO 的基础发光信号,在第 24 ...

讨论

该协议描述了一种基于细胞的报告基因测定,用于鉴定ATG4B抑制剂。原发性命中的鉴定基于处理表达 β-肌动蛋白和 dNGLUC 之间 LC3B 全长开放阅读框的细胞时的荧光素酶活性。该测定的一些优点是它灵敏、高度定量和非侵入性,因为它可以在不裂解细胞的情况下检测 dNGLUC。本文提出了用于生成稳定细胞系和初步筛选的详细方案。协议中有几个关键步骤。

首先,本文描述的方?...

披露声明

作者没有要披露的利益冲突。

致谢

这项工作得到了英国医学研究委员会对 MRC-UCL 大学单位资助参考MC_U12266B、MRC 痴呆症平台资助英国 MR/M02492X/1、英国胰腺癌(资助参考2018RIF_15)和 UCL 治疗加速支持计划的核心资助,并得到了 MRC Confidence in Concept 2020 UCL MC/PC/19054 的资金支持。编码ActinLC3dNGLUC(pMOWS-ActinLC3dNGLUC)的质粒购自Robin Ketteler博士(柏林医学院人类医学系)。

材料

NameCompanyCatalog NumberComments
50 µL Disposable Tips - Non-filtered, Pure, Nested 8 Stack (Passive Stack)Tecan30038609Disposable 96-tip rack
BioTek MultiFloBioTekbulk dispenser
CoelenterazineSanta Cruz Biotechnologysc-205904substrate
Columbus Image analysis softwarePerkin ElmerVersion 2.9.1image analysis software
DPBS (1x)Gibco14190-144
Echo Qualified 384-Well Polypropylene Microplate, Clear, Non-sterileBeckman Coulter001-14555384PP plate
EnVision IIPerkin Elmerluminescence plate reader
Express pick Library (96-well)-L3600-Z369949-100µLSelleckchemL3600Selleckchem
FMK9AMedChemExpressHY-100522
Greiner FLUOTRAC 200 384 well platesGreiner Bio-One781076solid-black 384-well plates
Harmony Imaging softwarePerkin ElmerVersion 5.1imaging software
Hoechst 33342, Trihydrochloride, Trihydrate - 10 mg/mL Solution in WaterThermoFisherH3570Hoechst 33342
Labcyte Echo 550 series with Echo Cherry Pick softwareLabcyte/Beckman Coulternanoscale acoustic liquid dispenser
Milli-Q waterdeionized water
Opera Phenix High-Content Screening SystemPerkin Elmerautomated microscope
Paraformaldehyde solution 4% in PBSSanta Cruz Biotechnologysc-281692
PhenoPlate 384-well, black, optically clear flat-bottom, tissue-culture treated, lidsPerkin Elmer6057300CellCarrier-384 Ultra PN
pMOWS-ActinLC3dNGLUCObtained from Dr. Robin Ketteler (Department of Human Medicine, Medical School Berlin)
Polybrene Infection / Transfection ReagentMerckTR-1003-Gpolybrene
Puromycin dihydrochloride, 98%, Thermo Scientific ChemicalsThermoFisherJ61278.MEPuromycin
Tecan Freedom EVO 200 robotTecanliquid handling robotic platform
X-tremeGENE HP DNA Transfection Reagent RocheMerck6366244001DNA transfection reagent

参考文献

  1. Kocaturk, N. M., et al. Autophagy as a molecular target for cancer treatment. European Journal of Pharmaceutical Sciences. 134, 116-137 (2019).
  2. Fu, Y., et al. Targeting ATG4 in cancer therapy. Cancers. 11 (5), 649 (2019).
  3. Towers, C. G., Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine. 14, 15-23 (2016).
  4. Agrotis, A., Ketteler, R. On ATG4B as drug target for treatment of solid tumours-the knowns and the unknowns. Cells. 9 (1), 53 (2019).
  5. Levy, J. M. M., Towers, C. G., Thorburn, A. Targeting autophagy in cancer. Nature Reviews Cancer. 17 (9), 528-542 (2017).
  6. Kimmelman, A. C., White, E. Autophagy and tumor metabolism. Cell Metabolism. 25 (5), 1037-1043 (2017).
  7. Tran, E., et al. Context-dependent role of ATG4B as target for autophagy inhibition in prostate cancer therapy. Biochemical and Biophysical Research Communications. 441 (4), 726-731 (2013).
  8. Pengo, N., et al. Identification of kinases and phosphatases that regulate ATG4B activity by siRNA and small molecule screening in cells. Frontiers in Cell and Developmental Biology. 6, 148 (2018).
  9. Kauffman, K. J., et al. Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases. Autophagy. 14 (6), 992-1010 (2018).
  10. Tanida, I., Sou, Y. -. S., Minematsu-Ikeguchi, N., Ueno, T., Kominami, E. Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. The FEBS Journal. 273 (11), 2553-2562 (2006).
  11. Agrotis, A., Pengo, N., Burden, J. J., Ketteler, R. Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy. 15 (6), 976-997 (2019).
  12. Nguyen, T. N., et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. The Journal of Cell Biology. 215 (6), 857-874 (2016).
  13. Ketteler, R., Tooze, S. A. ATG4: More than a protease. Trends in Cell Biology. 31 (7), 515-516 (2021).
  14. Zhang, L., Li, J., Ouyang, L., Liu, B., Cheng, Y. Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Letters. 373 (1), 19-26 (2016).
  15. Fernández, &. #. 1. 9. 3. ;. F., López-Otín, C. The functional and pathologic relevance of autophagy proteases. The Journal of Clinical Investigation. 125 (1), 33-41 (2015).
  16. Maruyama, T., Noda, N. N. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of Antibiotics. 71 (1), 72-78 (2017).
  17. Ketteler, R., Seed, B. Quantitation of autophagy by luciferase release assay. Autophagy. 4 (6), 801-806 (2008).
  18. Ketteler, R., Sun, Z., Kovacs, K. F., He, W. -. W., Seed, B. A pathway sensor for genome-wide screens of intracellular proteolytic cleavage. Genome Biology. 9 (4), 64 (2008).
  19. Luft, C., et al. Application of Gaussia luciferase in bicistronic and non-conventional secretion reporter constructs. BMC Biochemistry. 15, 14 (2014).
  20. Ketteler, R., Glaser, S., Sandra, O., Martens, U. M., Klingmüller, U. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Therapy. 9 (8), 477-487 (2002).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

196

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。