登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes an optimized 3D neural retina induction system that reduces the adhesion and fusion of retinal organoids with high repeatability and efficiency.

Abstract

Retinopathy is one of the main causes of blindness worldwide. Investigating its pathogenesis is essential for the early diagnosis and timely treatment of retinopathy. Unfortunately, ethical barriers hinder the collection of evidence from humans. Recently, numerous studies have shown that human pluripotent stem cells (PSCs) can be differentiated into retinal organoids (ROs) using different induction protocols, which have enormous potential in retinopathy for disease modeling, drug screening, and stem cell-based therapies. This study describes an optimized induction protocol to generate neural retina (NR) that significantly reduces the probability of vesiculation and fusion, increasing the success rate of production until day 60. Based on the ability of PSCs to self-reorganize after dissociation, combined with certain complementary factors, this new method can specifically drive NR differentiation. Furthermore, the approach is uncomplicated, cost-effective, exhibits notable repeatability and efficiency, presents encouraging prospects for personalized models of retinal diseases, and supplies a plentiful cell reservoir for applications such as cell therapy, drug screening, and gene therapy testing.

Introduction

The eye serves as the primary source of information among human sensory organs, with the retina being the principal visual sensory tissue in mammalian eyes1. Retinopathy stands as one of the primary global causes of eye diseases, leading to blindness2. Approximately 2.85 million people worldwide suffer from varying degrees of vision impairment due to retinopathy3. Consequently, investigating its pathogenesis is crucial for early diagnosis and timely treatment. Most studies on human retinopathy have primarily focused on animal models4,5

Protocol

This study was conducted in accordance with the Tenets of the Declaration of Helsinki and approved by the Institutional Ethics Committee of the Chinese PLA General Hospital. The WA09 (H9) ESC line was obtained from the WiCell Research Institute.

1. Culture media and reagent preparation

  1. Human ESC culture medium and passage solution
    1. Maintenance medium (MM): Prepare 500 mL of complete MM (Basal Medium + 5x supplement; see Table of Materials

Representative Results

A graphical overview of the modified protocol is shown in Figure 1. H9-ESCs were used to generate ROs when the cells were grown to a density of 70%-80%. Single-cell suspensions of H9-ESCs in 96 V-bottomed conical wells aggregated on day 1 and formed well-circumscribed round EBs by day 6. As the culture time increased, the volume of EBs gradually increased. On day 30, neuroepithelial-like structures were clearly formed and thickened during long-term NR differentiation.

Discussion

Human ROs can spatially and temporally recapitulate the development of the fetal retina, and early ROs exhibit a high degree of similarity to the fetal retina at equivalent stages of development15. In terms of tissue morphology and molecular expression, human RO closely mirror the actual growth status of the retinal tissue, providing tremendous and unprecedented opportunities in the fields of disease modeling, drug screening, and regenerative medicine. Currently, several different methods have bee.......

Acknowledgements

None.

....

Materials

NameCompanyCatalog NumberComments
0.01 M TPBSServicebioG0002Washing slices
4% ParaformaldehydeServicebioG1101-500MLFix retinal organoids
5 mL Pasteur pipetteNEST Biotechnology318516Pipette retinal organoids
96 V-bottomed conical wellsSumitomo BakelitMS-9096VZ
Adhesion Microscope SlidesCITOTEST188105Fix slices
AggreWell mediumSTEMCELL Technologies5893Medium
Anhydrous ethanolSINOPHARM10009218Dehydrate 
Anti-CHX10Santa Cruzsc-365519Primary antibody
Antifade SolutionZSGB-BIOZLI-9556
Anti-KI67Abcamab16667Primary antibody
Anti-NESTINSigmaN5413Primary antibody
Anti-Neuronal Class III β-Tubulin(TUJ1)BeyotimeAT809Primary antibody
Anti-PAX6Abcamab195045Primary antibody
Cell dissociation solution(CDS)STEMCELL Technologies7922Cell dissociation
CHIR99021SelleckchemS2924GSK-3α/β inhibitor
Cholesterol Lipid ConcentrateGibco12531018250×
Citrate Antigen Retrieval SolutionServicebioG1202-250ML20×, pH 6.0
CS10STEMCELL Technologies1001061Cell Freezing Medium
DAPIRoche10236276001Nuclear counterstain
Dimethyl sulfoxide(DMSO)SigmaD2650
DMEM/F12Gibco11330032Medium
DMEM/F12-GlutaMAXGibco10565018Medium
Donkey anti-Mouse Alexa Fluor Plus 488InvitrogenA32766Secondary Antibody
Donkey anti-Rabbit Alexa Fluor 568InvitrogenA10042Secondary Antibody
Ethylene Diamine Tetraacetic Acid (EDTA)BiosharpBL518A0.5 M, pH 8.0, cell dissociation
Extracellular matrix (ECM)Corning354277Coating plates
F12-GlutamaxGibco31765035Medium
Fetal Bovine SerumGibcoA5669701
Flow-like tissue cell quantitative analyzerTissueGnosticsTissueFAXS PlusScan sections
IMDM-GlutaMAXGibco31980030Medium
IWR1-endoSelleckchemS7086Wnt-inhibitor
KnockOut Serum ReplacementGibco10828028
LDN-193189 2HClSelleckchemS7507BMP-inhibitor
Low-adhesion 24-well PlatesCorning3473
Low-adhesion 6-well PlatesCorning3471
Maintenance medium (MM)STEMCELL Technologies85850Medium
N2 supplementGibco17502048
Normal Donkey SerumSolarbioSL050Blocking buffer
ParaplastLeica39601006Tissue embedding
PBS pH 7.4 basic (1x)GibcoC10010500BTWithout Ca+,Mg+
Reconbinant human bone morphogenetic protein-4(rhBMP4)R&D314-BPKey protein factor
Retinoic acidSigmaR2625Powder, keep out of light
SB431542SelleckchemS1067ALK5-inhibitor
SU5402SelleckchemS7667Tyrosine kinase inhibitor
Super PAP PenZSGB-BIOZLI-9305
TaurineSigmaT0625-10G
ThioglycerolSigmaM1753
Triton X-100SigmaX100Permeabilization
WA09 embryonic stem cell lineWiCell Research InstituteCell line
XyleneSINOPHARM10023418Dewaxing
Y-27632 2HCLSelleckchemS1049ROCK-inhibitor

References

  1. Hoon, M., Okawa, H., Della Santina, ., Wong, L., O, R. Functional architecture of the retina: development and disease. Prog Retin Eye Res. 42, 44-84 (2014).
  2. Steinmetz, J. D., et al.

Explore More Articles

Neural RetinaRetinal OrganoidsHuman Pluripotent Stem CellsRetinopathyDisease ModelingDrug ScreeningCell TherapyRetinal DevelopmentVesiculationFusionOptimizationInduction ProtocolSelf organizationRepeatabilityEfficiencyPersonalized ModelsCell Reservoir

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。