JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,提供了人食管类器官培养和气液界面培养的方案。食管类器官的气液界面培养可用于研究细胞因子对食管上皮屏障的影响。

摘要

食管鳞状上皮直接暴露在环境中,不断面对外来抗原,包括食物抗原和微生物。保持上皮屏障的完整性对于预防感染和避免由无害的食物源性抗原引起的炎症至关重要。本文提供了从患者活检生成人食管类器官和气液界面培养物的简化方案,以在组织稳态和疾病的背景下研究食管上皮室。这些方案是过去十年中重要的科学里程碑,描述了来自患者来源的原代细胞、类器官和气液界面培养物的三维器官样结构。它们提供了在三维框架内研究食管上皮中特定细胞因子、生长因子和信号通路功能的可能性,同时保持供体的表型和遗传特性。类器官通过评估细胞因子刺激后的转录组和蛋白质组来提供有关组织微结构的信息。相比之下,气液界面培养允许通过跨上皮阻力 (TEER) 或大分子通量测量来评估上皮屏障的完整性。将这些类器官和气液界面培养物相结合是推进食管上皮屏障受损条件研究的有力工具。

引言

食管炎症会损害上皮屏障的完整性 1,2,3,4,5,嗜酸性粒细胞性食管炎 (EoE) 所观察到的那样,这是一种以 Th2 为主的食管慢性炎症性疾病 6。EoE 于 1990 年代首次描述 7,8,主要由食物抗原 9,10,11,12,13 诱导。成人中最常见的 EoE 症状是吞咽困难和食物嵌塞14。在儿童中,EoE 通常表现为生长迟缓、食物拒绝、呕吐和腹痛15。全基因组关联研究 (GWAS) 已确定与上皮屏障完整性相关的 EoE 风险基因,使上皮成为 EoE 研究的重点 16,17,18。EoE 转录组学进一步揭示,分化过程受损和反应性基底区增生导致食管上皮屏障功能受损 3,5,19,20,21,22。对 EoE 是 Th2 介导的疾病6 的早期理解导致发现 IL-13 通过干扰上皮完整性作为驱动介质 3,4,21,23。实验系统允许解剖细胞因子介导的对上皮完整性的影响,从内在屏障损伤到遗传易感性,为研究免疫细胞与EoE中上皮细胞之间的复杂相互作用提供了可能性。人食管类器官和气液界面 (ALI) 培养物已被提议作为分析细胞因子刺激对上皮完整性后果的宝贵工具5

在2009年首次发表的肠道类器官报告使用肠道Lgr5 + ASCs概括小肠上皮室24之后,建立了第一个产生成体组织特异性干细胞(ASC)衍生食管类器官的方案。DeWard等人率先从小鼠食管上皮细胞中产生类器官25。2018 年,Kasagi 等人从永生化的人食管鳞状上皮细胞系 EPC2-hTERT 和原代患者来源的细胞中生成了人食管类器官26。同年,Zhang等人成功制备了诱导多能干细胞(iPSC)衍生的食管类器官。他们阐述了 TGFβ 和骨形态发生蛋白 (BMP) 抑制对食管祖细胞 (EPC) 发育的意义,以及 Notch 信号转导在分层鳞状上皮分化中的关键作用26,27。Trisno及其同事通过将Sox2确定为Wnt抑制剂来补充这些发现,该抑制剂将发育命运指向食管分化28。随后对方案、培养基组成和培养条件的改进提高了类器官形成率,并使得冷冻保存后传代培养和回收类器官成为可能26,29,30,31,32。尽管这些类器官是研究细胞因子刺激后组织结构和潜在靶基因表达的强大工具,但食管类器官无法提供测量跨上皮抵抗 (TEER) 或大分子通量作为屏障完整性的直接测量方法。正如 Sherrill 及其同事22 之前所描述的,模拟上皮分化的 ALI 培养物4 允许直接评估上皮完整性。结合患者来源的类器官和 ALI 培养物是研究 EoE 中组织结构和上皮屏障完整性的有力工具。

以下是从食管活检中分离活细胞和建立食管类器官和 ALI 培养物的程序,这些程序可用于进一步研究细胞因子对屏障完整性的影响。

研究方案

这些程序得到了瑞士西北部和中部伦理委员会(EKNZ;项目ID 2019-00273)。所有患者在内窥镜检查前都提供了实验性使用活检的书面知情同意书。研究中使用的试剂和设备列在 材料表中。

1. 患者来源的食管类器官的细胞分离

注: 表1中提供了用于培养人食管类器官的培养基成分列表。

  1. 进行活检。
    注:在本研究中,在食管胃十二指肠镜检查期间,使用具有 2.8 毫米工作通道的胃镜使用活检钳从一个食管段获得两个活检。
  2. 将活检转移到市售的角质形成细胞无血清培养基(KSFM;钙2+ 0.09 mM,1 ng/mL EGF,50 μg/mL BPE)。
    注意:活检可以在冰上储存几个小时直至使用。
  3. 用 1 mL 分散酶 I (10 U/mL) 替换 KSFM 培养基,并在室温下孵育活检 10 分钟。
  4. 将活检物在室温下以300× g 离心2分钟。
  5. 使用 1000 μL 移液管吸出分散酶,而不接触活检和细胞碎片沉淀。
  6. 用 1 mL Dulbecco 磷酸盐缓冲盐水 (DPBS) 冲洗活检。
  7. 将活检物在室温下以300× g 离心2分钟。
  8. 使用 1000 μL 移液管吸出上清液。
  9. 将活检与500μL胰蛋白酶-EDTA(0.05%)在37°C下孵育10分钟,同时以800rpm振荡。
  10. 通过重复上下移液进行机械破坏,直到获得单细胞悬浮液。
  11. 使用结核菌素注射器的橡胶柱塞头通过70μm细胞过滤器过滤细胞。
  12. 用 2-4 mL 大豆胰蛋白酶抑制剂 (250 μg/mL) 清洗过滤器。
  13. 通过 35 μm 细胞过滤器过滤细胞,该过滤器带有 5 mL 圆底聚苯乙烯管上的卡扣帽。
  14. 将单细胞溶液转移到 15 mL 锥形管中。
  15. 在4°C下以300× g 离心5分钟。
  16. 使用 1000 μL 移液管吸出上清液。
  17. 将细胞重悬于 100 μL KSFM 培养基中。
  18. 将 10 μL 台盼蓝与 10 μL 细胞悬液混合。
  19. 使用自动细胞计数仪对细胞进行计数。

2. 患者来源的类器官培养

  1. 计数后向细胞悬液中加入 1-2 mL KSFM。
  2. 在4°C下以300× g 离心5分钟。
  3. 用 1000 μL 移液管吸出上清液,而不干扰细胞沉淀。
  4. 将细胞沉淀重悬于基底膜提取物 (BME) 水凝胶基质(每 20,000 个细胞 40 μL BME)中。
    注意:加入 BME 后,将细胞保持在冰上,以防止 BME 过早凝固。
  5. 切断 200 μL 移液器吸头以吸出粘稠的 BME 细胞悬浮液混合物。
  6. 在预热(37°C)悬浮细胞培养板中形成40μL液滴。
  7. 将板在没有培养基的情况下在37°C下孵育20-30分钟,以确保BME液滴的凝固。
  8. 加入预热的 KSFM-C 培养基,补充有 10 μM Y27632(ROCK 抑制剂),用于培养的前两天。
  9. 每隔一天用新的 KSFM-C 培养基(不含 Y27632 和目标细胞因子)替换培养基。
  10. 吸出培养基并用移液管吸头刮去液滴,同时连续向孔中加入 1 mL 分散酶 II (1.5 U/mL)。
  11. 将BME-分散酶混合物转移到15mL离心管中,并在37°C的振荡水浴中孵育20分钟以消化BME。
  12. 在4°C下以250× g 离心3分钟,并吸出分散酶II。
  13. 根据目标读数的方案(例如,RNA 分离、蛋白质分离或用 4% PFA 固定用于组织学)进行。

3. 用于患者来源的气液界面 (ALI) 培养物的细胞分离

  1. 进行活检。在使用具有 2.8 mm 工作通道的胃镜进行食管胃十二指肠镜检查时,使用活检钳从一个食管段进行两次活检。
  2. 将活检物放入市售的角质形成细胞无血清培养基(KSFM;Ca2+ 0.09 mM,1 ng/mL EGF,50 μg/mL BPE),并在冰上储存数小时直至使用。
  3. 用 1 mL 分散酶 (10 U/mL) 交换 KSFM。之后,将活检细胞在室温下孵育10分钟。
  4. 将活检物在室温下以300×g离心2分钟。
  5. 使用 1000 μL 移液管取出分散酶,而不接触活检和细胞碎片沉淀。
  6. 用 1 mL DPBS 洗涤活检。
  7. 在室温下,将活检以300× g 旋转2分钟。
  8. 用 1000 μL 移液管吸出上清液。
  9. 将活检物在37°C的500μL胰蛋白酶-EDTA(0.05%)中孵育10分钟,并在孵育过程中以800rpm连续混合。
  10. 通过重复的上下移液机械地破坏活检,直到获得单细胞悬浮液。
  11. 将解离的细胞通过带有来自结核菌素注射器的橡胶柱塞头的 70 μm 细胞过滤器,并将细胞收集在 50 mL 锥形管中。
  12. 用 2-4 mL 大豆胰蛋白酶抑制剂 (250 μg/mL) 清洗过滤器,以去除过滤器中剩余的细胞。
  13. 用 35 μm 细胞过滤器卡帽将细胞过滤到 5 mL 圆底聚苯乙烯管中。
  14. 将细胞转移到 15 mL 锥形管中。
  15. 在4°C下以300× g 离心5分钟。
  16. 用 1,000 μL 移液管取出上清液。
  17. 将细胞沉淀重悬于 4 mL KSFM 培养基 (Ca2+ 0.09 mM) 中,包括 10 μM Y27632。
  18. 将细胞转移到 T25 细胞培养瓶中。
  19. 为了扩增原代角质形成细胞,将细胞培养至60%-80%汇合度约1周。
    注:传代 (P)0 形成胰岛状细胞团,不是单层。原代角质形成细胞从 P1 开始形成单层。
  20. 以 60%-80% 汇合度传代,并在 2-3 个 T25 或 1-2 个 T75 细胞培养瓶中重新接种 P1。
  21. 当角质形成细胞形成单层,汇合度为 60%-80% 时,再次传代 P1。

4.患者来源的气液界面(ALI)培养

  1. 将 P2 原代角质形成细胞接种到用于 ALI 培养的 transwell 插入物上。
    注:将 400,000 个细胞接种在 12 个孔插入物(每 0.6 cm 200,000 个角质形成细胞)中,放入 500 μL KSFM(Ca2+ 0.09 mM,1 ng/mL EGF,50 μg/mL BPE)中。
    1. 将 150,000 个细胞接种到 100 μL KSFM(Ca2+ 0.09 mM,1 ng/mL EGF,50 μg/mL BPE)的 24 个孔插入物(每 0.5 cm2 中 155,000 个角质形成细胞)。
    2. 或者,在-80°C的KSFM培养基(Ca2 + 0.09mM + 10%DMSO)中冷冻24小时,然后将冷冻细胞转移到液氮中以备后用。
      注意:使用冷冻小瓶时,在使用细胞进行 ALI 培养之前,请在解冻后再次传代一次。
  2. 将培养基添加到transwell培养板插入物下方的下孔中。
    注:对于 12 孔板:1.5 mL KSFM(Ca2+ 0.09 mM,1 ng/mL EGF,50 μg/mL BPE)。对于 24 孔板:600 μL KSFM(Ca2+ 0.09 mM,1 ng/mL EGF,50 μg/mL BPE)。
  3. 2 天后更换中高钙 KSFM(Ca2+ 1.8 mM,1 ng/mL EGF,50 μg/mL BPE)。
  4. 每隔一天更换一次高钙 KSFM 培养基,直到第 7 天。
  5. 在第 7 天进行气运,从上室吸出培养基并用含有 10 ng/mL KGF (=FGF7)、75 μg/mL 抗坏血酸 (AA) 的高钙 KSFM(Ca2+ 1.8 mM,1 ng/mL EGF,50 μg/mL BPE)替换下室中的培养基。
    1. 可选:将所需浓度的目标细胞因子添加到培养基中。
  6. 每隔一天更换培养基,直到第 14 天。

5. 跨上皮电阻 (TEER) 测量

  1. 将TEER仪的电极浸入装有5%次氯酸钠的24孔板的孔中10-15分钟,对TEER仪的电极进行灭菌。
  2. 将电极浸入 4 个连续的孔中,用无菌 ddH2O 洗去 5% 次氯酸钠,然后让电极风干。
  3. 通过将一个电极放入孔中,将第二个电极放入transwell插入物中,用PBS填充,然后测量TEER,从而设置空白。
    注:TEER 测量的推荐体积:用于 12 孔板(孔中 1900 μL,插入体中 900 μL)。适用于 24 孔板(孔中 750-1000 μL,插入物中 250 μL)。
  4. 用室温无菌PBS替换ALI培养物的培养基。
    注意:从下孔中取出培养基,在第二步中,从Transwell插入物中取出培养基。同样,首先将 PBS 添加到插入物中,然后添加到下孔中,以防止 ALI 培养物从跨孔膜上分离。
  5. 将TEER计电极置于含有ALI培养物的实验孔中,并进行TEER测量1
    注意: 在更换介质之前,每隔一天进行一次 TEER 测量。

6. 大分子通量

  1. 将 FITC-葡聚糖 (3-5 kDa) 储备溶液稀释至工作浓度 1 mg/mL。
    注意:始终保护 FITC-葡聚糖免受光照。
  2. 准备一个稀释行,将FITC浓度降低(1000μg/ mL至0.25μg/ mL)作为读数的标准品。
  3. 将 500 μL FITC-葡聚糖溶液 (1 mg/mL) 加入 transwell 的上室,将 1.5 mL 培养基(+/- 目标细胞因子)加入下室,并将板置于培养箱中。
  4. 在相应的时间点(例如,0 分钟、15 分钟、30 分钟、60 分钟、90 分钟、120 分钟、150 分钟和 180 分钟)从下室收集 120 μL 培养基。
  5. 移液器将每个时间点的复制品(50 μL/孔)放入黑色 96 孔透明平底板中。
  6. 激发 490 nm 的 FITC-葡聚糖,并使用酶标仪读取 520 nm 波长的发射。
  7. 按标准计算大分子通量。

结果

食管类器官将根据所提供的方案的指示从患者活检中提取的原代细胞生长,如倒置明场显微镜所记录的那样(图1)。上皮 ASC 在将分离的细胞接种到基底膜提取物中后,在培养的前两天开始以自组织方式形成细胞簇,充当支架。细胞簇的大小和数量在第一周内持续增加,用倒置明场显微镜观察(图2)。然而,在这一点上,细胞簇缺乏 ASC 衍生的食管类?...

讨论

所提供的程序允许培养患者来源的类器官和 ALI 培养物,成功的可能性很高。类器官方案改编自第一个发表的报告人类食管类器官产生的方案26 和最近发表的方案32。Sherill 及其同事描述了 ALI 模型22。类器官和 ALI 培养模型在研究食管疾病(如 EoE 5,26)中细胞因子和其他介质对食管上皮屏障的影响方?...

披露声明

作者没有什么可透露的。

致谢

SNSF 向 J.H.N. 提供的 310030_219210 拨款支持了此手稿的出版,没有限制。 图 1 是在 BioRender.com 的帮助下创建的。

材料

NameCompanyCatalog NumberComments
1250 µL Griptip - FilterIntegra4445
300 µL Griptip - FilterIntegra4435
70 µM cell strainerSarstedt83.3945.070
Ascorbic AcidSigma-Aldrich (Merck)A4544
Bovine pituitary extractGibco (Thermo Fischer Scientific)3700015
Calcium chlorideSigma-Aldrich (Merck)21115
Cell Culture Multiwell Plates CELLSTAR for suspension culturesGreiner Bio-One7.657 185
Cultrex Basement Membrane Extract (BME), Type 2, PathclearR&D Systems (Bio-Techne)3532-010-02
Dimethyl sulfoxide (DMSO), >99,5% BioScience GradeCarl RothA994
Dispase ICorning354235
Dispase IISigma-Aldrich (Merck)D4693
Dulbeccos Phosphate Buffered Saline  (DPBS)Sigma-Aldrich (Merck)D8537
EVE Automated Cell CounterNanoEntekEVE-MC
EVE Cell counting slideNanoEntekEVS-050
Falcon 5 mL Round Bottom Polystyrene Test Tube, with Cell Strainer Snap CapFalcon352235
Fluorescin isothiocyanate (FITC)-dextranSigma-Aldrich (Merck)FD4average mol wt 3000-5000
Heraeus - Megafuge  40R Thermo Fisher Scientific75004518
Human recombinant epidermal growth factorGibco (Thermo Fischer Scientific)3700015
Keratinocyte-SFMGibco (Thermo Fischer Scientific)17005042
Penicillin-StreptomycinGibco (Thermo Fischer Scientific)15140122
Recombinant Human KGF/FGF-7 ProteinR&D Systems (Bio-Techne)251-KG-010/CF
Screw cap tube, 15 mLSarstedt62.554.502
Single Channel EVOLVE 100-1000 µL Integra3018
Single Channel EVOLVE 20-200 µL Integra3016
Syringe 1 mL1134950
ThermoMixer CEppendorf5382000015
Trypsin inhibitor from Glycine max (soybean)Sigma-Aldrich (Merck)T9128
Trypsin-EDTASAFC Biosciences (Merck)59418C
Y27632 dihydrochlorideTocris (Bio-Techne)1254

参考文献

  1. Wu, L., et al. Filaggrin and tight junction proteins are crucial for IL-13-mediated esophageal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol. 315 (3), G341-G350 (2018).
  2. Davis, B. P., et al. Eosinophilic esophagitis-linked calpain 14 is an IL-13-induced protease that mediates esophageal epithelial barrier impairment. JCI Insight. 1 (4), e86355 (2016).
  3. Blanchard, C., et al. Coordinate interaction between IL-13 and epithelial differentiation cluster genes in eosinophilic esophagitis. J Immunol. 184 (7), 4033-4041 (2010).
  4. Kc, K., Rothenberg, M. E., Sherrill, J. D. In vitro model for studying esophageal epithelial differentiation and allergic inflammatory responses identifies keratin involvement in eosinophilic esophagitis. PLoS One. 10 (6), e0127755 (2015).
  5. Kaymak, T., et al. IL-20 subfamily cytokines impair the oesophageal epithelial barrier by diminishing filaggrin in eosinophilic oesophagitis. Gut. 72 (5), 821-833 (2023).
  6. Straumann, A., Bauer, M., Fischer, B., Blaser, K., Simon, H. U. Idiopathic eosinophilic esophagitis is associated with a T(H)2-type allergic inflammatory response. J Allergy Clin Immunol. 108 (6), 954-961 (2001).
  7. Straumann, A., Spichtin, H. P., Bernoulli, R., Loosli, J., Vogtlin, J. Idiopathic eosinophilic esophagitis: a frequently overlooked disease with typical clinical aspects and discrete endoscopic findings. Schweiz Med Wochenschr. 124 (33), 1419-1429 (1994).
  8. Attwood, S. E., Smyrk, T. C., Demeester, T. R., Jones, J. B. Esophageal eosinophilia with dysphagia. A distinct clinicopathologic syndrome. Dig Dis Sci. 38 (1), 109-116 (1993).
  9. Kelly, K. J., et al. Eosinophilic esophagitis attributed to gastroesophageal reflux: improvement with an amino acid-based formula. Gastroenterology. 109 (5), 1503-1512 (1995).
  10. Fogg, M. I., Ruchelli, E., Spergel, J. M. Pollen and eosinophilic esophagitis. J Allergy Clin Immunol. 112 (4), 796-797 (2003).
  11. Wolf, W. A., Jerath, M. R., Dellon, E. S. De-novo onset of eosinophilic esophagitis after large volume allergen exposures. J Gastrointestin Liver Dis. 22 (2), 205-208 (2013).
  12. Moawad, F. J., et al. Correlation between eosinophilic oesophagitis and aeroallergens. Aliment Pharmacol Ther. 31 (4), 509-515 (2010).
  13. Woo, W., Aceves, S. S. The role of the allergist in the management of eosinophilic esophagitis. Curr Opin Gastroenterol. 37 (4), 390-396 (2021).
  14. Dellon, E. S., et al. Updated International Consensus diagnostic criteria for eosinophilic esophagitis: Proceedings of the AGREE conference. Gastroenterology. 155 (4), 1022-1033 (2018).
  15. Liacouras, C. A., Spergel, J., Gober, L. M. Eosinophilic esophagitis: Clinical presentation in children. Gastroenterol Clin North Am. 43 (2), 219-229 (2014).
  16. Sleiman, P. M., et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat Commun. 5, 5593 (2014).
  17. Kottyan, L. C., et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat Genet. 46 (8), 895-900 (2014).
  18. Kottyan, L. C., et al. Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes. J Allergy Clin Immunol. 147 (1), 255-266 (2021).
  19. Sherrill, J. D., et al. Analysis and expansion of the eosinophilic esophagitis transcriptome by RNA sequencing. Genes Immun. 15 (6), 361-369 (2014).
  20. Collins, M. H., et al. Newly developed and validated eosinophilic esophagitis histology scoring system and evidence that it outperforms peak eosinophil count for disease diagnosis and monitoring. Dis Esophagus. 30 (3), 1-8 (2017).
  21. Rochman, M., et al. Profound loss of esophageal tissue differentiation in patients with eosinophilic esophagitis. J Allergy Clin Immunol. 140 (3), 738-749 (2017).
  22. Sherrill, J. D., et al. Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis. Mucosal Immunol. 7 (3), 718-729 (2014).
  23. Blanchard, C., et al. IL-13 involvement in eosinophilic esophagitis: transcriptome analysis and reversibility with glucocorticoids. J Allergy Clin Immunol. 120 (6), 1292-1300 (2007).
  24. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  25. DeWard, A. D., Cramer, J., Lagasse, E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep. 9 (2), 701-711 (2014).
  26. Kasagi, Y., et al. The esophageal organoid system reveals functional interplay between Notch and cytokines in reactive epithelial changes. Cell Mol Gastroenterol Hepatol. 5 (3), 333-352 (2018).
  27. Zhang, Y., et al. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for notch signaling. Cell Stem Cell. 23 (4), 516-529 (2018).
  28. Trisno, S. L., et al. Esophageal organoids from human pluripotent stem cells delineate sox2 functions during esophageal specification. Cell Stem Cell. 23 (4), 501-515 (2018).
  29. Kijima, T., et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell Mol Gastroenterol Hepatol. 7 (1), 73-91 (2019).
  30. Karakasheva, T. A., et al. Generation and characterization of patient-derived head and neck, oral, and esophageal cancer organoids. Curr Protoc Stem Cell Biol. 53 (1), e109 (2020).
  31. Zheng, B., et al. A new murine esophageal organoid culture method and organoid-based model of esophageal squamous cell neoplasia. iScience. 24 (12), 103440 (2021).
  32. Nakagawa, H., et al. Modeling epithelial homeostasis and reactive epithelial changes in human and murine three-dimensional esophageal organoids. Curr Protoc Stem Cell Biol. 52 (1), e106 (2020).
  33. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  34. Boyce, S. T., Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol. 81, 33-40 (1983).
  35. Bertolero, F., Kaighn, M. E., Gonda, M. A., Saffiotti, U. Mouse epidermal keratinocytes. Clonal proliferation and response to hormones and growth factors in serum-free medium. Exp Cell Res. 155 (1), 64-80 (1984).
  36. Bertolero, F., Kaighn, M. E., Camalier, R. F., Saffiotti, U. Effects of serum and serum-derived factors on growth and differentiation of mouse keratinocytes. In Vitro Cell Dev Biol. 22 (7), 423-428 (1986).
  37. Witkowski, T. A., et al. Y-27632 acts beyond ROCK inhibition to maintain epidermal stem-like cells in culture. J Cell Sci. 136 (17), (2023).
  38. Chapman, S., Liu, X., Meyers, C., Schlegel, R., McBride, A. A. Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J Clin Invest. 120 (7), 2619-2626 (2010).
  39. Sasaki, M., et al. Lysyl oxidase regulates epithelial differentiation and barrier integrity in eosinophilic esophagitis. bioRxiv. , (2023).
  40. Doyle, A. D., et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 78 (1), 192-201 (2023).
  41. Hara, T., et al. CD73(+) epithelial progenitor cells that contribute to homeostasis and renewal are depleted in eosinophilic esophagitis. Cell Mol Gastroenterol Hepatol. 13 (5), 1449-1467 (2022).
  42. Kasagi, Y., et al. Fibrostenotic eosinophilic esophagitis might reflect epithelial lysyl oxidase induction by fibroblast-derived TNF-alpha. J Allergy Clin Immunol. 144 (1), 171-182 (2019).
  43. Spence, J. R., et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470 (7332), 105-109 (2011).
  44. Takebe, T., et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499 (7459), 481-484 (2013).
  45. Bhatia, S. N., Ingber, D. E. Microfluidic organs-on-chips. Nat Biotechnol. 32 (8), 760-772 (2014).
  46. Nikolaev, M., et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature. 585 (7826), 574-578 (2020).
  47. Schutgens, F., et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol. 37 (3), 303-313 (2019).
  48. Sorrentino, G., et al. Mechano-modulatory synthetic niches for liver organoid derivation. Nat Commun. 11 (1), 3416 (2020).
  49. Azouz, N. P., et al. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Sci Transl Med. 10 (444), 9736 (2018).
  50. Azouz, N. P., et al. Functional role of kallikrein 5 and proteinase-activated receptor 2 in eosinophilic esophagitis. Sci Transl Med. 12 (545), 7773 (2020).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

3D

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。