这种实用性可以帮助我们研究在毛细胞立体纤毛束表面的机械电转导机械的纳米结构组分的动态变化。该技术的主要优点是在单个纳米分辨率下对具有复杂形貌的活细胞表面进行延时成像,并且不与样品进行物理接触。这种技术几乎可以应用于任何活细胞。
我们之前在My Image Bacteria Soon中匹配了感染病毒的肺上皮细胞系的表面,肌肉细胞。在每次成像开始时测试纳米颗粒。制造纳米移液器后,检查气泡,去除任何气泡(如果存在),然后将纳米移液器安装到跳跃探针离子电导显微镜移液器支架上。
在四毫升的浴液中溶液到腔室中,并将腔室置于HPICM级上。将接地电极引入浴液,并确保通过膜片钳放大器施加到移液器的电压为零。将微型机械手置于垂直位置后,将移液器移至Z中,直到其接触液体并将放大器偏移设置为零,然后加100毫伏以检查移液器电流。
使用硅胶将AFM校准标准品连接到腔室,并用四毫升HBSS覆盖样品。使用双面胶带将腔室固定到HPICM设置的X Y级,并如图所示将新的纳米移液器加载到支架上。测试纳米移液器电阻和直径后,将电流设置为一纳安培。
使用粗糙的膜片钳机械手将纳米移液器定位在校准标准中心上方,并增加设定点,同时实时监测示波器上Z压电致动器传感器的信号。在建立稳定的可重复Z进近循环后,将设定点降低到刚好高于不稳定点的值,并以大约每秒5微米的速度向下移动移液器,直到它到达样品。实时Z定位信号的底部水平将增加,表明纳米移液器由于感测样品表面而被撤回。
由于AFM标准上的安装不均匀,感兴趣区域的最高点可能是未知的。因此,将移液器缩回的振幅设置为至少200至500纳米。注意不要超过Z压电致动器运动的上限,以低分辨率开始成像。
一旦确定了样品在成像区域的最高点,请降低跳幅并沿Z轴缩回移液器约200微米,以防止在将样品移动到新的X Y位置之前与样品发生任何不希望的碰撞。找到感兴趣区域后,开始以更高的分辨率成像。对于听觉毛细胞成像,使用牙线或柔性玻璃移液器将刚分离的Corti器官牢固地固定到腔室中。
使用双面胶带将腔室牢固地固定到X Y压电级,并如图所示将新的纳米移液器加载到支架上。检查纳米移液器电阻后,使用膜片钳微型机械手将纳米移液器定位在毛细胞区域,同时在倒置显微镜中观察Corti X植物的器官。在示波器上记录实时电流和Z定位信号,以检查系统是否稳定,设定点为0.5%6或更低,并确定最佳设定点并如图所示接近样品。
使用至少6至8微米的跳跃幅度对样品进行低分辨率成像。如果纳米移液器需要移动到新的X Y位置,请将移液器缩回约500纳米以避免与组织内的任何高特征发生碰撞,并重复低分辨率HPICM成像,直到毛细胞所在的感兴趣区域。然后在15分钟或更短的时间内以更高的分辨率对感兴趣区域进行成像。
HPICM方案可用于可视化具有复杂地形的任何活细胞,例如活大鼠听觉毛细胞束。尽管与扫描电子显微镜图像相比,HPICM图像显示出较低的X Y分辨率,但HPICM图像可以成功解析不同的立体纤毛行。立体纤毛尖端的形状,甚至是连接相邻立体纤毛的小五纳米链接。
鉴于HPICM成像的非接触性质,可以对同一毛细胞束进行连续延时成像数小时,而不会损害束粘性。请注意,在设定点非常低的情况下,系统可能会将电流的微小波动解释为遇到电池表面,从而导致图像中的白点噪声。同样,较大的跳跃幅度可能会增加移液器的横向共振,也会导致产生噪声像素。
相反,如果跳跃幅度太小,或者设定值太高,纳米移液器可能会与样品碰撞,导致成像伪影或毛束损坏。尝试此过程时要记住的最重要的事情是在处理活细胞时,每个毛细胞束花费的时间少于15分钟。在获得发束的图像后,可以尝试从立体纤毛表面的特定位置获取单通道记录,以回答有关机械加速器通道属性的问题。