Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we demonstrate the in vivo function of cutaneous dendritic cell subsets in Th17 immunity of deep dermal Candida albicans infection.

Abstract

The skin is the outermost barrier organ in the body, which contains several types of dendritic cells (DCs), a group of professional antigen-presenting cells. When the skin encounters invading pathogens, different cutaneous DCs initiate a distinct T cell immune response to protect the body. Among the invading pathogens, fungal infection specifically drives a protective interleukin-17-producing Th17 immune response. A protocol was developed to efficiently differentiate Th17 cells by intradermal Candida albicans infection to investigate a subset of cutaneous DCs responsible for inducing Th17 immunity. Flow cytometry and gene expression analyses revealed a prominent induction of Th17 immune response in skin-draining lymph nodes and infected skin. Using diphtheria toxin-induced DC subset-depleting mouse strains, CD301b+ dermal DCs were found to be responsible for mounting optimal Th17 differentiation in this model. Thus, this protocol provides a valuable method to study in vivo function of differential subsets of cutaneous DCs to determine Th17 immunity against deep skin fungal infection.

Introduction

The skin is the outermost barrier organ, which protects the body from invading external pathogens and stimuli1. Skin is composed of two distinct layers, including the epidermis-a stratified epithelium of keratinocytes-and the underlying dermis-a dense network of collagen and other structural components. As a primary epithelial barrier tissue, the skin chiefly provides physical barriers and contributes to additional immunological barriers as it contains numerous resident immune cells2,3. Among the cutaneous immune cells, dendritic cells (DCs) are a type of professional antigen-presenting....

Protocol

NOTE: All animal experiments were approved by the Institution Animal Care and Use Committee (IACUC, Approval ID: 2019-0056, 2019-0055). Seven to 9-week-old wild-type (WT) C57BL/6 female mice weighing 18-24 g were used for this study. Some studies were performed using female Langerin-diphtheria toxin receptor (DTR) and CD301b-DTR mice of the same age and weight. Four to six mice were used in each group for an experiment, and the data are representative of three independent experiments. This work was conducted under B.......

Representative Results

Here, we demonstrated an intradermal infection model of C. albicans to study the role of cutaneous DC-mediated Th17 immune response in vivo. Following an initial intradermal injection with C. albicans into the footpad, the skin-draining LNs were enlarged (Figure 2A). During the sensitization period, the ratio of CD4+ to CD8+ effector T cells was notably increased (Figure 2B,C). Additionally, the e.......

Discussion

This paper describes a method of intradermal C. albicans infection that allows the study of the role of cutaneous DCs in Th17 immune response in vivo. By applying multiparametric flow cytometric analysis with DT-induced mouse strains, we found that CD301b+ dermal DCs are a crucial cutaneous DC subset for initiating Th17 immunity against deep dermal C. albicans infection. Moreover, the results showed that the IL-17-producing T cell response was mainly produced by CD4+ but n.......

Acknowledgements

This research was supported by Samjung-Dalim Faculty research grant of Yonsei University College of Medicine (6-2019-0125), by a Basic Science Research Program through the National Research Foundation of Republic of Korea funded by the Ministry of Education (2019R1A6A1A03032869) and Ministry of Science and Information and Communications Technology (2018R1A5A2025079, 2019M3A9E8022135, and 2020R1C1C1014513), and by Korea Centers for Disease Control and Prevention (KCDC, 2020-ER6714-00).

....

Materials

NameCompanyCatalog NumberComments
0.3 mL (31 G) insulin syringe BD328822
1x  Perm/Wash bufferBD554723
1 mL (30 G) syringe insulin syringe BD328818
24 well-plateFalcon353047
50 mL conical tubeFalcon50050
70 μm strainerFalcon352350
70% ethanol
ABI StepOnePlus real-time PCR systemApplied Biosystems
Anesthesia chamberHarvard Apparatus
Brefeldin ABDBD 555029
β-MercaptoethanolGibco21985023
Candida albicans strain SC5314provided by Daniel Kaplan at Pittsburgh University
CD3BioLegend100216Clone 17A2
CD301b-DTR miceprovided by Akiko Iwasaki at Yale University
CD4BioLegend100408Clone GK1.5
CD44eBioscience47-0441-80Clone IM7
CD8aBD Biosciences553031Clone 53.6.7
Centrifuge
Clicker counter
CuvetteKartellKA.1938
Cytofix/Cytoperm solutionBD554722
Diphtheria toxin (DT)Sigma
Dulbecco's phosphate-buffered saline (DPBS)WelgeneLB001-02
FACS (Fluorescence-activated cell sorting) bufferIn-house
Fc receptor blockerBD553142
Fetal bovine serum (FBS)WelgeneS101-07
ForcepsRobozfor harvesting sample
HemocytometerFisher Scientific267110
Hybrid-R total RNA kitGeneAll Biotechnology305-101
hydroxyethyl piperazine ethane sulfonic acid (HEPES)Gibco15630-080
IL-17A (intracellular cytokine)BioLegend506912Clone TC11-18H10.1
IonomycinSigmaI0634
Isoflurane
Langerin-DTRprovided by Heung Kyu Lee at Korea Advanced Institute of Science and Technology
LIVE/DEAD Fixable Aqua Dead Cell Stain KitInvitrogenL34957
Loop and NeedleSPL90010
MonensinBDBD554724
NanoDrop 2000Thermo Scientific
Penicillin Gibco15140-122
Petri dishSPL10090
Phorbol 12-myristate 13-acetate (PMA)SigmaP8139
PrimeScript RT Master MixTakara BioRR360A
RPMI 1640Gibco11875-093
ScissorsRobozfor harvesting sample
Stainless Steel Beads, 5 mmQIAGEN69989
Sterile pipette tip
SYBR Green Premix Ex Taq IITakara BioRR820A
TCRβBioLegend109228Clone H57-597
ThermoMixer CEppendorf
TissueLyserQIAGEN
UV-VIS spectrophotometerPerkinElmer
Wild-type C57BL/6 miceOrient Bio7- to 9-week-old mice were used
Yeast-peptone-dextrose-adenine (YPDA) medium, liquid, sterile (1% yeast extract, 2% Bacto peptone, 2% dextrose)
YPDA agar plate, sterile (1% yeast extract, 2% Bacto peptone, 2% dextrose, 2% Bacto agar)

References

  1. Nestle, F. O., Di Meglio, P., Qin, J. Z., Nickoloff, B. J. Skin immune sentinels in health and disease. Nature Reviews Immunology. 9 (10), 679-691 (2009).
  2. Bouwstra, J. A., Ponec, M. The skin barrier in healthy and diseased state.

Explore More Articles

Cutaneous Dendritic CellsTh17 ImmunityCandida AlbicansIntradermal InfectionCD301b Dermal DCsSkin draining Lymph NodesT Cell Immune ResponseFungal InfectionFlow CytometryGene Expression Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved