Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Entwicklung biotinylatable Fusionsproteine hat viele mögliche Anwendungen in verschiedenen Bereichen der Forschung. Rekombinante Protein-Engineering ist ein geradlinig Verfahren, die kostengünstig ist, das hohe Ausbeuten von kundenspezifischen Proteinen.
Rekombinantes Protein Engineering hat Escherichia coli verwendet (E. coli) Expressionssystemen fast 4 Dekaden, und heute E. coli ist immer noch das am häufigsten verwendete Wirtsorganismus. Die Flexibilität des Systems erlaubt die Zugabe von Einheiten, wie eine Biotin-Tag (für Streptavidin Wechselwirkungen) und größere funktionelle Proteine wie das grün fluoreszierende Protein oder kirschrot Protein. Auch hat die Integration von unnatürlichen Aminosäuren wie Metallionenchelatoren, eindeutig reaktiven funktionellen Gruppen, spektroskopische Sonden und Moleküle verleihen posttranslationale Modifikationen bessere Manipulation von Proteineigenschaften und Funktionen aktivieren. Als Ergebnis dieser Technik schafft anpassbare Fusionsproteine, die erheblichen Nutzen für verschiedene Forschungsfelder zu bieten. Genauer gesagt, hat die biotinylatable Proteinsequenz in viele Zielproteine wegen der hohen Affinität zwischen Biotin Wechselwirkung mit Avidin und Streptavidin übernommen. Dieser Zusatz hat die Verbesserung Detektion und Reinigung des markierten Proteine als auch der Weg für sekundäre Anwendungen wie Zellsortierung unterstützt. So Biotin-markierte Moleküle zeigen einen zunehmenden und großen Einfluss in bioindustriellen und Biomedizin. Für die Zwecke unserer Forschung haben wir rekombinante biotinylierte Fusionsproteine, Nervenwachstumsfaktor (NGF) und semaphorin3A (Sema3A) Funktionsbereiche entwickelt. Wir haben früher, wie diese biotinylierte Fusionsproteine zusammen mit anderen aktiven Proteinsequenzen können Biomaterialien für das Tissue Engineering und regenerative Zwecke gebunden werden berichtet. Dieses Protokoll beschreibt die Grundlagen der Ingenieur biotinylatable Proteine an der Milligramm-Maßstab unter Verwendung einer T7-lac-induzierbaren Vektor-und E. coli-Expressionswirte, ab Transformation zum Scale-up und Reinigung.
Proteine umfassen eine breite Palette von Biomolekülen, die für viele biologische Funktionen verantwortlich sind, letztlich um die richtige Gewebebildung und Organisation führt. Diese Moleküle zu initiieren Tausende von Signalwegen, die Hochregulierung und / oder Herunterregulierung von Genen und anderen Proteinen zu steuern, die Aufrechterhaltung Gleichgewicht innerhalb des menschlichen Körpers. Störung eines einzelnen Proteins beeinflusst diese gesamte Bahn von Signalen, die zu Beginn der verheerenden Störungen oder Krankheiten führen kann. Engineering einzelnen Proteine im Labor bietet eine Lösung zur Bekämpfung dieser Nebenwirkungen und bietet eine Alternative zu niedermolekularen Wirkstoffen. 1977, ein Gen, das 14 Aminosäuren Somatostatin-Sequenz, einer der ersten Werk Polypeptide unter Verwendung von E. geschaffen coli ein. Bald nach 1979 wurde Insulin in pBR322 kloniert, transformiert, ausgedrückt und gereinigt 2. Seitdem haben rekombinanten Proteinen, ihren Einfluss, um mehrere Felder der Rechts erweitertSuche wie Biomaterialien, Wirkstofftransport, Gewebetechnik, Bio-Pharmazie, Landwirtschaft, industrielle Enzyme, Biokraftstoffe, etc. (siehe Referenzen für Bewertungen 3-8). Dies ist weitgehend auf die Vielseitigkeit, die das Verfahren bietet über die Zugabe von anwendungsspezifischen chemischen Einheiten oder Proteinsequenzen zu Zwecken einschließlich, aber nicht beschränkt auf, Zielproteinidentifizierung, Stabilisierung und Reinigung begrenzt.
Über rekombinante DNA-Technologie können rekombinante Proteine in einer Vielzahl von eukaryotischen und prokaryotischen Wirtssystemen, einschließlich Säuger-, Pflanzen-, Insekten-, Hefe-, Pilz oder Bakterien exprimiert werden. Jeder Host bietet verschiedene Vorteile und in der Regel das beste System wird auf der Grundlage der Proteinfunktion, Ertrag, Stabilität, Gesamtkosten und Skalierbarkeit bestimmt. Bakterien-Zellen fehlen oft die post-translationale Modifikation Mechanismen, die eukaryotischen Wirten (dh Glykosylierung, Disulfidbrücken, E tc.) 5. Als Ergebnis Säuger-und Insekten-Systemen in der Regel eine bessere Kompatibilität und die Expression von eukaryontischen Proteinen führen, aber diese Rechner sind in der Regel teuer und zeitaufwendig 9. Daher E. coli ist der bevorzugte Wirt für unsere Expressionssystem, da die Zellen rasch expandieren in preiswerten Wachstumsbedingungen und die genetische Expression Mechanismen sind gut verstanden 5,9. Zusätzlich ist dieses System leicht trotz des Fehlens von posttranslationalen Modifikationen 10 Scale-up für Produktionszwecke und die Ergebnisse in funktionelle Proteine. Die E. coli K12 Stamm wird in diesem Protokoll für das Klonen gewählt, weil dieser Stamm bietet ausgezeichnete Plasmid-Ausbeuten bezogen auf hohe Transformationseffizienz. Darüber hinaus wird ein E. coli-Stamm BL21 zur Expression verwendet werden, da diese Wirtsstamm enthält die T7-RNA-Polymerase-Gen, gesteuert Protein Expression und Stabilität 11 liefert.
Zelt "> Nach Hostauswahl müssen weitere Pflege in der Wahl des geeigneten Expressionsvektor ausgewählt und gesteuert Proteinexpression zu erleichtern aufgenommen werden. Synthese von rekombinanten Proteinen beginnt mit einem Ziel-DNA-Sequenz, die unter der Leitung des Bakteriophagen T7 Transkriptions-und Translationssignale kloniert wird, und Expression in Wirtszellen, die chromosomale Kopie des T7-RNA-Polymerase-Gen 12 enthält, induziert. Diese Vektoren, aus dem Plasmid pBR322 (für einen Überblick siehe Referenz 13), fest mit dem T7-Promotor zunächst von Studier und Mitarbeiter entwickelten 14 gesteuert und zusätzliche Steuerung durch die Einbeziehung der lac-Operator-lac-Repressor (LAC1) 15,16. Für die rekombinante Proteintechnik bietet das Expressionssystem die Fähigkeit, eine spezifische Aminosäuresequenz eines gewünschten Proteins durch Einsetzen verschiedener DNA-Zielsequenzen anzupassen oder um Fusionsproteine zu erzeugen bis kombinierter Domain gemachts von einzelnen Proteinen. Darüber hinaus können einige Vektorreihe umfassen Peptid-Tag Modifikationen am N-oder C-Terminus angeordnet werden. Unser Gestaltungszwecken wurde ein Histidin (His)-Tag an die DNA-Zielsequenz zur Reinigung aufgenommen und 15 Aminosäure biotinylatable Sequenz wurde für die Biotinylierung 17,18 enthalten. In diesem Protokoll ein Plasmid ein Ampicillin-Resistenz-Gen enthält, wurde ausgewählt, um unsere biotinylatable Fusionsprotein-Sequenzen tragen. Die Expression wird in diesem Vektor durch T7-lac-Promotor kontrolliert und ist leicht mit Isopropyl-β-D-1-thiogalactopyranosid (IPTG) induziert.Test Ausdrücke (kleine Kulturen) werden verwendet, um das Vorhandensein und die Löslichkeit des Zielproteins, das entweder in einer löslichen oder unlöslichen Form zu formulieren Reinigungsverfahren ausgedrückt werden kann zu bestimmen. Ein lösliches Protein innerhalb der Bakterienzelle exprimiert wird spontane Faltung unterziehen, um seine native Struktur 19 zu halten. Typischerweise ist die MutterStruktur ist thermodynamisch günstig. In vielen Fällen ist die Stoffwechselaktivität der Rechner ist nicht förderlich für das Zielprotein, indem Druck auf das System, um die unlöslichen Proteinproduktion und die Bildung von Einschlusskörpern von unlöslichen Proteinaggregaten zusammen führt. Damit das Zielprotein denaturiert, wodurch sie im allgemeinen biologisch inaktiven 20. Beide Test Ausdrücke vergrösserte und Isolationsverfahren sind durch die Löslichkeit des Zielproteins bestimmt wird. Eine weitere Renaturierung oder Rückfaltungsschritt für unlösliche Proteine erforderlich. Die resultierenden rekombinanten Proteine können weiter unter Verwendung von Grßenausschluß-Chromatographie gereinigt werden.
Im Haus bietet rekombinanten Proteinproduktion Kostenvorteile gegenüber kommerziellen Produkten seit Milligramm Zielprotein pro Liter Hauptkultur isoliert werden. Die meisten der benötigten Ausrüstung ist in einer typischen biologischen oder chemischen Labor erhältlich. Protein-Engineering ermöglicht die Erzeugungvon kundenspezifischen Fusionsproteine mit zusätzlichen Funktionen, die nicht im Handel erhältlich sind immer. Abbildung 1 zeigt die wichtigsten Verfahren in der Technik rekombinanten Proteinen beteiligt. Mit diesem Expressionssystem haben wir viele biotinylatable Proteine, wie Interferon-gamma, Plättchenwachstumsfaktor, Knochen-morphogenetisches Protein 21-23 angelegt, aber wir werden auf zwei Proteine, die wir für Axon Führung, NGF (29 kDa ausgebildet konzentrieren ) und Sema3A (91 kDa) 10 (für eine Übersicht siehe Referenz 24). Biotinylierung ist eine übliche Technik zur Identifizierung, Isolierung und Immobilisierung der markierten Proteine unter Verwendung der bekannten Biotin-Streptavidin-Wechselwirkung 25-27. Biophysikalischen Sonden 28,29, Biosensoren 30 und Quantenpunkte 31 sind Beispiele von Systemen, die hohe Affinität von Biotin-Streptavidin Konjugation mit einem K d in der Größenordnung von 10 -15 M 27 nutzen. Die E. coli bioZinn-Ligase BirA, unterstützt die kovalente Bindung von Biotin an die Lysin-Seitenkette in der Biotin-markierten Sequenz gefunden 18,32. Tethering Biotin an Werkstoffen und Biomolekülen hat anhaltende Abgabe von Wachstumsfaktoren produziert, um für mehrere Tissue Engineering Anwendungen 21,33-35 Zelle. Daher Engineering diese maßgeschneiderten biotinylatable Proteinen ist ein leistungsfähiges Werkzeug, das mehrere Forschungsinteressen überwinden kann.
1. Die Projektierung des Zielproteins
2. Machen Agar-Platten
Hinweis: Es ist sehr wichtig, dass alle Aktien von Antibiotika, Platten, Puffer, etc. ordnungsgemäß gelagert (Temperatur und Dauer) und bleiben frei von Proteasen (sterilisiert).
3. Klonierung des Biotin Tagged Plasmid
Hinweis: Die Bedingungen sind aseptisch gemacht.
4. Transformation von Plasmid in Expression-Host
Hinweis: Die Bedingungen sind aseptisch gemacht.
5. Scale-up Verfahren und Hauptkultur
6. Isolierung und Reinigung von rekombinantem Protein
Hinweis: Wenn das Protein in der löslichen Region auf Basis von SDS-PAGE-Analyse von Schritt 4,9, dann wird "native Isolation" verwendet werden, aber für die unlöslichen Proteinen "Nonnative Isolation"-Verfahren durchgeführt.
7. Biotinylierung von gereinigtem Protein
Klonierung und Expression-Test
Wenn Beschichtung richtig durchgeführt wird, sollten einzelne isolierte Kolonien zu bilden, um die Chancen Zupfen klonalen transformierten Bakterien-Zellen (2A) zu erhöhen. Wenn jedoch zu viele Zellen plattiert, Platten zu lange bei 37 ° C inkubiert oder Transformation ist fraglich, Kolonien können die Agar-Platte abdecken oder bilden größere Aggregate von Zellen (Fig. 2B und 2C). W...
Rekombinante Proteintechnik ist eine sehr mächtige Technik, die viele Disziplinen überspannt. Es ist kostengünstig, abstimmbaren und ein relativ einfaches Verfahren, das die Herstellung von hohen Ausbeuten von kundenspezifischen Proteinen. Es ist wichtig zu beachten, dass die Gestaltung und die Zielproteine exprimieren, ist nicht immer einfach. Basale Expression und rekombinante Proteinstabilität ist von den spezifischen Möglichkeiten der Vektor, E. coli-Zellstämme, Peptid-Tag Ergänzungen und Kulti...
Die Autoren haben nichts zu offenbaren.
Die Autoren danken der University of Akron für die Finanzierung, die diese Arbeit unterstützt bestätigen.
Name | Company | Catalog Number | Comments |
1,4-Dithio-DL-threitol, DTT, 99.5% | Chem-Impex International | 127 | 100 g |
2-Hydroxyethylmercaptan β-Mercaptoethanol | Chem-Impex International | 642 | 250 ml |
Acetic acid, glacial | EMD | AX0073-9 | 2.5 L |
Agar | Bioshop | AGR001.500 | 500 g |
Ampicillin sodium salt | Sigma-Aldrich | A9518 | 25 g |
Antifoam 204 | Sigma-Aldrich | A6426 | 500 g |
Barstar-NGF pET-21a(+) | GenScript USA Inc. | 4 µg | |
BL21(DE3) Competent Cells | Novagen | 69450 | 1 ml; Expression Host |
Bradford reagent | Sigma-Aldrich | B6916 | 500 ml |
BugBuster | Novagen | 70922-3 | 100 ml |
Gel filtration standard | Bio-Rad | 151-1901 | 6 vials |
Glycerol | Bioshop | GLY001.1 | 1 L |
Guanidine hydrodioride amioformamidine hydrochloride | Chem-Impex International | 152 | 1 kg |
His-Pur Ni-NTA Resin | Thermo Scientific | 88222 | 100 ml |
Hydrochloric acid | EMD | HX0603-3 | 2.5 L |
Imidazole | Chem-Impex International | 418 | 250 g |
IPTG | Chem-Impex International | 194 | 100 g |
Laemmli sample buffer | Bio-Rad | 161-0737 | 30 ml |
Lauryl sulfate sodium salt, Sodium dodecyl surface | Chem-Impex International | 270 | 500 g |
LB Broth | Sigma-Aldrich | L3022 | 1 kg |
NovaBlue Competent Cells | Novagen | 69825 | 1 ml; Cloning Host |
Phosphate buffered saline | Sigma-Aldrich | P5368-10PAK | 10 pack |
Potassium Chloride | Chem-Impex International | 01247 | 1 kg |
Sema3A-pET-21a(+) | GenScript USA Inc. | 4 µg | |
SimplyBlue SafeStain | Invitrogen | LC6060 | 1 L |
Sodium chloride | Sigma-Aldrich | S5886-1KG | 1 kg |
Sodium hydroxide | Fisher Scientific | S318-500 | 500 g |
Sodium phosphate diabasic | Sigma-Aldrich | S5136-500G | 500 g |
Sodium phosphate monobasic | Sigma-Aldrich | S5011 | 500 g |
Terrific Broth | Bioshop | TER409.5 | 5 kg |
Tetracycline hydrochloride | Chem-Impex International | 667 | 25 g |
Tris/Glycine/SDS Buffer, 10x | Bio-Rad | 1610732 | 1 L |
Trizma Base | Sigma-Aldrich | T1503 | 1 kg |
Tryptone, pancreatic | EMD | 1.07213.1000 | 1 kg |
Yeast extract, granulated | EMD | 1.03753.0500 | 500 g |
ÄKTApurifier10 | GE Healthcare | 28-4062-64 | Includes kits and accessories |
Benchtop Orbital Shaker | Thermo Scientific | SHKE4000 | MAXQ 4000 |
BirA500 | Avidity | BirA500 | Enzyme comes with reaction buffers and biotin solution |
Dialysis Casette | Thermo Scientific | 66380 | Slide-A-Lyzer (Extra Strength) |
Dialysis Tubing | Spectrum Laboratories | 132127, 132129 | MWCO: 25,000 and 50,000 |
Flow Diversion Valve FV-923 | GE Healthcare | 11-0011-70 | |
FluoReporter Biotin Quantification Assay Kit | Invitrogen | 1094598 | |
Frac-950 Tube Racks, Rack C | GE Healthcare | 18-6083-13 | |
Fraction Collector Frac-950 | GE Healthcare | 18-6083-00 | Includes kits and accessories |
Heated/Refrigerated Circulator | VWR | 13271-102 | Model 1156D |
Heating Oven FD Series | Binder | Model FD 115 | |
HiLoad 16/60 Superdex 200 pg | GE Healthcare | 17-1069-01 | Discontinued--Replacement Product: HiLoad 16/600 Superdex 200 pg |
J-26 XPI Avanti Centrifuge | Beckman Coulter | 393126 | |
JA 25.50 Rotor | Beckman Coulter | 363055 | |
JLA 8.1 Rotor | Beckman Coulter | 969329 | Includes 1 L polyporpylene bottles |
JS 5.3 Rotor | Beckman Coulter | 368690 | |
Laminar Flow Hood | Themo Scientific | 1849 | Forma 1800 Series Clean Bench |
Microplate Reader | TECAN | infinite M200 | |
Mini-PROTEAN Tetra Cell | Bio-Rad | 165-8004 | 4-gel vertical electrophoresis system |
Mini-PROTEAN TGX Precast Gels | Bio-Rad | 456-9036 | Any kDa, 15-well comb |
Ni-NTA Column | Bio-Rad | 737-2512 | 49 ml volume ECONO-Column |
Plasmid Miniprep Kit | Omega Bio-Tek | D6943-01 | |
PowerPac HC Power Supply | Bio-Rad | 164-5052 | 250 V, 3 A, 300 W |
Round Bottom Polypropylene Copolymer Tubes | VWR | 3119-0050 | 50 ml tubes for JA 25.50 rotor |
Spin-X UF Concentrators | Corning | 431488, 431483 | 20 and 6 ml; MWCO: 10,000 Da |
Subcloning Service | GenScript USA Inc. | Protein Services | |
Ultrasonic Processor | Cole-Parmer | 18910445A | Model CV18 |
Vortex-Genie 2 | Scientific Industries | SI-0236 | Model G560 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten