Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
This manuscript describes the use of a bioluminescent strain of African trypanosomes to enable the tracking of late stage infection and demonstrates how in vivo live imaging can be used to visualize infections within the central nervous system in real-time.
Human African trypanosomiasis (HAT) is a multi-stage disease that manifests in two stages; an early blood stage and a late stage when the parasite invades the central nervous system (CNS). In vivo study of the late stage has been limited as traditional methodologies require the removal of the brain to determine the presence of the parasites.
Bioluminescence imaging is a non-invasive, highly sensitive form of optical imaging that enables the visualization of a luciferase-transfected pathogen in real-time. By using a transfected trypanosome strain that has the ability to produce late stage disease in mice we are able to study the kinetics of a CNS infection in a single animal throughout the course of infection, as well as observe the movement and dissemination of a systemic infection.
Here we describe a robust protocol to study CNS infections using a bioluminescence model of African trypanosomiasis, providing real time non-invasive observations which can be further analyzed with optional downstream approaches.
Human African trypanosomiasis (HAT), or sleeping sickness, is caused by the vector-borne protozoan parasites of the Trypanosoma brucei spp1. Estimated numbers of current cases is fewer than 7 thousand every year with almost 70 million people exposed to the risk of the parasite infection within the African continent. The disease, which is most often lethal if left untreated, comprises an early hemolymphatic stage where parasites are present in the blood, progressing to the late stage when parasites invade the central nervous system (CNS) and are no longer susceptible to treatment by early stage trypanosomal drugs2. The current drug therapies for late-stage HAT have both complex, prolonged, treatment regimens and severe adverse effects as well as reported resistance, therefore research into new drug therapies is imperative3,4.
The study of late-stage human African trypanosomiasis (HAT) within traditional mouse models is lengthy and complex, with the removal of brain tissue being required to monitor parasitic burden5. The animal infective strain T. b. brucei is used as the study model of trypanosomiasis with the late stage appearing 21 days post infection (dpi). To monitor the wild type nonbioluminescent parasite infection in the mouse model, peripheral blood films or quantitative PCR are the only methods to determine parasite burden. For parasite burden in the brain, the mouse needs to be culled, brain excised and qPCR carried out on tissues, making it impossible to track parasites through multiple time points in the late stage infection. This results in the inability to follow real-time infections within the central nervous system (CNS).
In vivo bioluminescence imaging (BLI) can provide highly sensitive, non-invasive detection of parasite dissemination and disease progression in a mouse model that can be followed in a single animal for the entirety of the experiment6. BLI is based on the emission of light in the visible spectrum produced by a luciferase-catalyzed reaction. The emitted photons are then detected by a charge coupled device (CCD) camera7. For this purpose, the pathogen is genetically modified to express a luciferase protein and the substrate, luciferin, is introduced at time points of interest by injection. The main advantage of this method is the ability to carry out longitudinal studies, in which the same animal can be imaged several times with minimal adverse effects. The acquired bioluminescence signal can be quantified, thus indicating the pathogen burden.
The optimization and validation of a red-shifted bioluminescent T. b. brucei has enabled the investigation of the late stage infection through non-invasive procedures, detecting parasites earlier than blood film microscopy and greatly reducing the time, cost and numbers of animals needed to study CNS infection and drug screening in late-stage trypanosomiasis8,9. In this protocol we demonstrate infection of mice with bioluminescent trypanosomes and how to then visualize the parasites in vivo for quantification of disease progression and CNS penetration.
Ethik
Alle Arbeiten wurden im Rahmen der Genehmigung der britischen Home Office Tiere durchgeführt (Scientific Procedures) Act 1986 und der London School of Hygiene & Tropical Medicine Tierschutz und Ethik Review Board. ANKOMMEN Leitlinie werden in diesem Bericht folgt.
1. In - vivo - Passage von Biolumineszenz Trypanosoma brucei brucei
2. Infektion von Versuchsmäusen
3. Biolumineszenz Imaging-Infektion zu verfolgen
Hinweis: Um die Infektion zu überwachen, ganze animal nichtinvasive Bildgebung verwendet werden.
4. Bestätigen ZNS-Infektion
5. Die Quantifizierung der Biolumineszenz-Bildgebung
Hinweis: Die Biolumineszenz quantifiziert werden können, die Region von Interesse (ROI) mit der Bildverarbeitungssoftware und für die Hintergrund Biolumineszenz korrigiert.
Dieses Protokoll zeigt , wie Krankheitsprogression nach einer Infektion von Mäusen mit T. folgen b. brucei, ein Modell für die afrikanische Trypanosomiasis. 1 , die die Zeitleiste des Versuchsprotokoll zeigt, den Zeitplan für die Behandlung und Imaging - Schritte zeigt, Fig . 2 eine typische Sichtfeld in einer festen Giemsa-gefärbten Blutausstrich zeigt , verwendet periphere Parasitämie quantitativ zu bestimmen, mi...
Die Entwicklung eines biolumineszenten T. b. brucei GVR35 Stamm ermöglicht die Visualisierung eines Trypanosomeninfektion von den frühen bis späten Stadium. Zurück Infektionsmodellen konnten die späten Stadium zu erkennen, wenn Parasiten im Gehirn, in Echtzeit aus dem Blut Film Mikroskopie sind und erforderlich , um die Keulung und Beseitigung von Gehirnen von der infizierten Mäuse Parasitenlast 12 zu bestimmen. Die Biolumineszenz reduziert inter Maus Variabilität als eine einzige Maus kann ü...
The authors have nothing to disclose.
Wir danken John Kelly und Martin Taylor (London School of Hygiene & Tropical Medicine) für T. Bereitstellung b. brucei GVR35-VSL-2 und Dr. Andrea Zelmer (LSHTM) für die Beratung über in - vivo - Bildgebung. Diese Arbeit wurde von der Bill and Melinda Gates Foundation Global Health Program (Grantnummer OPPGH5337) unterstützt.
Name | Company | Catalog Number | Comments |
PBS | Sigma, UK | P4417 | tablets pH 7.4 |
Glucose | Sigma, UK | G8270 | 99.5% (molecular) grade |
Ammonium chloride | Sigma, UK | A9434 | 99.5% (molecular) grade |
Heparin (lithium salt) | Sigma, UK | H0878 | |
Hi-FCS | Gibco, Life Technologies, UK | 10500-064 | 500 ml |
DPBS | Sigma, UK | D4031 | Sterile filtered |
Mr. Frosty | Nalgene, UK | ||
Giemsa | Sigma, UK | G5637 | |
D-Luciferin | Perkin Elmer, UK | ||
Sigma, UK | 115144-35-9 | ||
Diminazene aceturate | Sigma, UK | D7770 | Analytical grade |
IVIS Lumina II | Perkin Elmer, UK | other bioimagers available e.g. from Bruker, Kodak | |
Living Image v. 4.2 | Perkin Elmer, UK | proprietary software for Perkin Elmer IVIS instruments; other instruments may have their own | |
1 ml syringe | Fisher Scientific, UK | 10142104 | |
20 ml syringe | Fisher Scientific, UK | 10743785 | |
25G Needles | Greiner Bio-one | N2516 | |
21G Needles | Greiner Bio-one | N2138 | |
Twin-frosted microscope slide | VWR, UK | 631-0117 | |
1.5 ml microcentrifuge tube | StarLab, UK | I1415-1000 | |
7 ml Bijou tube | StarLab, UK | E1412-0710 | |
Mouse restrainer | Sigma, UK | Z756903 | our restrainer was made in-house, this is a similar model |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten