JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
This manuscript describes the use of a bioluminescent strain of African trypanosomes to enable the tracking of late stage infection and demonstrates how in vivo live imaging can be used to visualize infections within the central nervous system in real-time.
Human African trypanosomiasis (HAT) is a multi-stage disease that manifests in two stages; an early blood stage and a late stage when the parasite invades the central nervous system (CNS). In vivo study of the late stage has been limited as traditional methodologies require the removal of the brain to determine the presence of the parasites.
Bioluminescence imaging is a non-invasive, highly sensitive form of optical imaging that enables the visualization of a luciferase-transfected pathogen in real-time. By using a transfected trypanosome strain that has the ability to produce late stage disease in mice we are able to study the kinetics of a CNS infection in a single animal throughout the course of infection, as well as observe the movement and dissemination of a systemic infection.
Here we describe a robust protocol to study CNS infections using a bioluminescence model of African trypanosomiasis, providing real time non-invasive observations which can be further analyzed with optional downstream approaches.
Human African trypanosomiasis (HAT), or sleeping sickness, is caused by the vector-borne protozoan parasites of the Trypanosoma brucei spp1. Estimated numbers of current cases is fewer than 7 thousand every year with almost 70 million people exposed to the risk of the parasite infection within the African continent. The disease, which is most often lethal if left untreated, comprises an early hemolymphatic stage where parasites are present in the blood, progressing to the late stage when parasites invade the central nervous system (CNS) and are no longer susceptible to treatment by early stage trypanosomal drugs2. The current drug therapies for late-stage HAT have both complex, prolonged, treatment regimens and severe adverse effects as well as reported resistance, therefore research into new drug therapies is imperative3,4.
The study of late-stage human African trypanosomiasis (HAT) within traditional mouse models is lengthy and complex, with the removal of brain tissue being required to monitor parasitic burden5. The animal infective strain T. b. brucei is used as the study model of trypanosomiasis with the late stage appearing 21 days post infection (dpi). To monitor the wild type nonbioluminescent parasite infection in the mouse model, peripheral blood films or quantitative PCR are the only methods to determine parasite burden. For parasite burden in the brain, the mouse needs to be culled, brain excised and qPCR carried out on tissues, making it impossible to track parasites through multiple time points in the late stage infection. This results in the inability to follow real-time infections within the central nervous system (CNS).
In vivo bioluminescence imaging (BLI) can provide highly sensitive, non-invasive detection of parasite dissemination and disease progression in a mouse model that can be followed in a single animal for the entirety of the experiment6. BLI is based on the emission of light in the visible spectrum produced by a luciferase-catalyzed reaction. The emitted photons are then detected by a charge coupled device (CCD) camera7. For this purpose, the pathogen is genetically modified to express a luciferase protein and the substrate, luciferin, is introduced at time points of interest by injection. The main advantage of this method is the ability to carry out longitudinal studies, in which the same animal can be imaged several times with minimal adverse effects. The acquired bioluminescence signal can be quantified, thus indicating the pathogen burden.
The optimization and validation of a red-shifted bioluminescent T. b. brucei has enabled the investigation of the late stage infection through non-invasive procedures, detecting parasites earlier than blood film microscopy and greatly reducing the time, cost and numbers of animals needed to study CNS infection and drug screening in late-stage trypanosomiasis8,9. In this protocol we demonstrate infection of mice with bioluminescent trypanosomes and how to then visualize the parasites in vivo for quantification of disease progression and CNS penetration.
윤리학
모든 작업은 영국 홈 오피스 동물의 승인 (과학적인 절차) 법 1986 위생 및 열대 의학 동물 복지와 윤리 심의위원회의 런던 학교에서 실시 하였다. 가이드 라인에 도착하는이 보고서에 따른다.
발광 생물 트리파노소마 (Trypanosoma) brucei brucei의 생체 항로 1.
실험 쥐의 2. 감염
3. 생물 발광 이미징 감염을 추적하는
참고 : 감염을 모니터링하려면 전체 ANIM알 비파괴 이미징을 이용할 수있다.
4. CNS 감염을 확인
생물 발광 이미징 5. 정량
주 : 생물 발광 이미징 소프트웨어이자 (ROI)의 영역을 사용하여 정량화 배경 생물 발광 대해 보정 될 수있다.
이 프로토콜은 T.와 마우스의 감염 다음 질병의 진행을 수행하는 방법을 보여줍니다 비. brucei는 인간의 아프리카 트리파노소마 증의 모델이. 그림 1 치료 및 이미징 단계의 시간표를 보여주는 실험 프로토콜의 타임 라인을 보여줍니다.이 주변 기생충을 정량하는 데 사용되는 고정 김사 묻은 혈액 도말 검사에서보기의 전형적인 필드?...
생물 발광의 T. 개발 비. brucei GVR35 변형 후반 단계에 이른에서 트리파노소마 감염의 시각화 할 수 있습니다. 이전 감염 모델 기생충은 뇌에있는 경우 혈액 막 현미경에서 실시간으로, 말기를 검출 할 수 없었다 및 기생 부하 (12)를 결정하기 위해 감염된 마우스에서 뇌의 컬링 및 제거가 필요했다. 하나의 마우스 감염의 전체 및 모든 단계에서 관찰 할 수 감염의 빠른 질적 평가...
The authors have nothing to disclose.
우리는 T.를 제공하는 존 켈리 마틴 테일러 (위생 및 열대 의학의 런던 학교) 감사합니다 비. brucei GVR35-VSL-2 및 생체 내 이미징에 대한 조언 박사 안드레아 Zelmer (LSHTM). 이 작품은 빌과 멜린다 게이츠 재단 글로벌 건강 프로그램 (허가 번호 OPPGH5337)에 의해 지원되었다.
Name | Company | Catalog Number | Comments |
PBS | Sigma, UK | P4417 | tablets pH 7.4 |
Glucose | Sigma, UK | G8270 | 99.5% (molecular) grade |
Ammonium chloride | Sigma, UK | A9434 | 99.5% (molecular) grade |
Heparin (lithium salt) | Sigma, UK | H0878 | |
Hi-FCS | Gibco, Life Technologies, UK | 10500-064 | 500 ml |
DPBS | Sigma, UK | D4031 | Sterile filtered |
Mr. Frosty | Nalgene, UK | ||
Giemsa | Sigma, UK | G5637 | |
D-Luciferin | Perkin Elmer, UK | ||
Sigma, UK | 115144-35-9 | ||
Diminazene aceturate | Sigma, UK | D7770 | Analytical grade |
IVIS Lumina II | Perkin Elmer, UK | other bioimagers available e.g. from Bruker, Kodak | |
Living Image v. 4.2 | Perkin Elmer, UK | proprietary software for Perkin Elmer IVIS instruments; other instruments may have their own | |
1 ml syringe | Fisher Scientific, UK | 10142104 | |
20 ml syringe | Fisher Scientific, UK | 10743785 | |
25G Needles | Greiner Bio-one | N2516 | |
21G Needles | Greiner Bio-one | N2138 | |
Twin-frosted microscope slide | VWR, UK | 631-0117 | |
1.5 ml microcentrifuge tube | StarLab, UK | I1415-1000 | |
7 ml Bijou tube | StarLab, UK | E1412-0710 | |
Mouse restrainer | Sigma, UK | Z756903 | our restrainer was made in-house, this is a similar model |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유