Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Hier beschreiben wir die Herstellungsmethodik für anpassbare Kohlefaser-Elektrodenarrays zur Aufzeichnung in vivo in Nerv und Gehirn.
Herkömmliche periphere Nervensonden werden hauptsächlich in einem Reinraum hergestellt und erfordern den Einsatz mehrerer teurer und hochspezialisierter Werkzeuge. Dieser Artikel stellt einen Reinraum-"leichten" Herstellungsprozess von neuronalen Elektrodenarrays aus Kohlefaser vor, der von einem unerfahrenen Reinraumbenutzer schnell erlernt werden kann. Dieser Prozess zur Herstellung von Kohlefaser-Elektrodenarrays erfordert nur ein Reinraumwerkzeug, eine Parylene C-Abscheidungsmaschine, die schnell erlernt oder zu Grenzkosten an eine kommerzielle Verarbeitungsanlage ausgelagert werden kann. Dieser Herstellungsprozess umfasst auch die manuelle Bestückung von Leiterplatten, Isolierung und Spitzenoptimierung.
Die drei verschiedenen Hier untersuchten Spitzenoptimierungen (Nd:YAG-Laser, Lötlampe und UV-Laser) führen zu einer Reihe von Spitzengeometrien und 1-kHz-Impedanzen, wobei gebläselte Fasern zu der niedrigsten Impedanz führen. Während frühere Experimente die Wirksamkeit von Laser- und Lötlampenelektroden bewiesen haben, zeigt dieses Papier auch, dass UV-lasergeschnittene Fasern neuronale Signale in vivo aufzeichnen können. Bestehende Kohlefaser-Arrays haben entweder keine individuierten Elektroden zugunsten von Bündeln oder erfordern reinraumgefertigte Führungen für Die Bevölkerung und Isolierung. Die vorgeschlagenen Arrays verwenden nur Werkzeuge, die auf einem Benchtop für die Faserpopulation verwendet werden können. Dieser Herstellungsprozess für Kohlefaserelektrodenarrays ermöglicht eine schnelle Anpassung der Bulk-Array-Herstellung zu einem reduzierten Preis im Vergleich zu kommerziell erhältlichen Sonden.
Ein Großteil der neurowissenschaftlichen Forschung beruht auf der Aufzeichnung neuronaler Signale mittels Elektrophysiologie (ePhys). Diese neuronalen Signale sind entscheidend für das Verständnis der Funktionen neuronaler Netze und neuartiger medizinischer Behandlungen wie Gehirnmaschine und periphere Nervenschnittstellen1,2,3,4,5,6. Die Forschung rund um periphere Nerven erfordert maßgeschneiderte oder kommerziell erhältliche neuronale Aufzeichnungselektroden. Neuronale Aufzeichnungselektroden - einzigartige Werkzeuge mit Mikrometerabmessungen und zerbrechlichen Materialien - erfordern einen speziellen Satz von Fähigkeiten und Geräten für die Herstellung. Eine Vielzahl von spezialisierten Sonden wurde für spezifische Endanwendungen entwickelt; Dies bedeutet jedoch, dass Experimente um derzeit verfügbare kommerzielle Sonden herum entworfen werden müssen, oder ein Labor muss in die Entwicklung einer spezialisierten Sonde investieren, was ein langwieriger Prozess ist. Aufgrund der großen Vielfalt der neuronalen Forschung im peripheren Nerv besteht eine hohe Nachfrage nach einer vielseitigen ePhys-Sonde4,7,8. Eine ideale ePhys-Sonde würde eine kleine Aufnahmestelle, eine niedrige Impedanz9 und einen finanziell realistischen Preispunkt für die Implementierung in einem System aufweisen3.
Aktuelle kommerzielle Elektroden neigen dazu, entweder extraneurale oder Manschettenelektroden (Neural Cuff10, MicroProbes Nerve Cuff Electrode11) zu sein, die außerhalb des Nervs sitzen, oder intrafaszikulär, die in den Nerv eindringen und innerhalb des Faszikels von Interesse sitzen. Da manschettenelektroden jedoch weiter von den Fasern entfernt sitzen, nehmen sie mehr Lärm von nahe gelegenen Muskeln und anderen Faszikeln auf, die möglicherweise nicht das Ziel sind. Diese Sonden neigen auch dazu, den Nerv einzuengen, was zu Biofouling - einer Ansammlung von Gliazellen und Narbengewebe - an der Elektrodenschnittstelle führen kann, während das Gewebe heilt. Intrafaszikuläre Elektroden (wie LIFE12, TIME13 und Utah Arrays14) bieten den Vorteil der Faszikelselektivität und haben ein gutes Signal-Rausch-Verhältnis, was bei der Unterscheidung von Signalen für die Maschinenschnittstelle wichtig ist. Diese Sonden haben jedoch Probleme mit der Biokompatibilität, wobei sich die Nerven im Laufe der Zeit verformen3,15,16. Wenn sie kommerziell gekauft werden, haben beide Sonden statische Designs ohne Option für eine experimentspezifische Anpassung und sind für neuere Labore kostspielig.
Als Reaktion auf die hohen Kosten und Biokompatibilitätsprobleme anderer Sonden können Kohlefaserelektroden neurowissenschaftlichen Labors die Möglichkeit bieten, ihre eigenen Sonden zu bauen, ohne dass spezielle Geräte erforderlich sind. Kohlefasern sind ein alternatives Aufnahmematerial mit einem kleinen Formfaktor, der eine geringe Beschädigung ermöglicht. Kohlefasern bieten eine bessere Biokompatibilität und eine wesentlich geringere Narbenreaktion als Silizium17,18,19 ohne die intensive Reinraumverarbeitung5,13,14. Carbonfasern sind flexibel, langlebig, lassen sich leicht in andere Biomaterialien integrieren19 und können von Nerve7,20 durchdringen und aufzeichnen. Trotz der vielen Vorteile von Carbonfasern empfinden viele Labore die manuelle Herstellung dieser Arrays als mühsam. Einige Gruppen21 kombinieren Kohlenstofffasern zu Bündeln, die zusammen zu einem größeren Durchmesser (~200 μm) führen; Unseres Wissens wurden diese Bündel jedoch nicht in Nerven verifiziert. Andere haben individuierte Kohlefaser-Elektrodenarrays hergestellt, obwohl ihre Methoden reinraumgefertigte Kohlefaserführungen22,23,24 und Geräte zum Bestücken ihrer Arrays erfordern17,23,24. Um dies zu beheben, schlagen wir eine Methode zur Herstellung eines Kohlefaser-Arrays vor, das auf dem Labortisch durchgeführt werden kann und spontane Modifikationen ermöglicht. Das resultierende Array behält individuierte Elektrodenspitzen ohne spezielle Faserbesiedlungswerkzeuge bei. Zusätzlich werden mehrere Geometrien vorgestellt, um den Anforderungen des Forschungsexperiments gerecht zu werden. Aufbauend auf früheren Arbeiten8,17,22,25 bietet dieses Dokument detaillierte Methoden zum manuellen Erstellen und Ändern verschiedener Array-Stile mit minimalem Reinraumschulungszeit.
Alle Tierverfahren wurden vom Institutional Animal Care and Use Committee der University of Michigan genehmigt.
1. Auswahl eines Kohlefaser-Arrays
2. Löten des Steckers auf die Leiterplatte
3. Faserpopulation
4. Auftragen von ultraviolettem (UV) Epoxidharz zur Isolierung der Kohlefasern
5. Überprüfen elektrischer Verbindungen mit 1 kHz Impedanzscans (Abbildung 5)
6. Parylen c Isolierung
HINWEIS: Parylen c wurde als Isolationsmaterial für die Kohlefasern gewählt, da es bei Raumtemperatur über Chargen von Arrays abgeschieden werden kann und eine hochgradig konforme Beschichtung bietet.
7. Methoden zur Zubereitung von Trinkgeldern
HINWEIS: Zwei Spitzenpräparate in diesem Abschnitt verwenden Laser zum Schneiden von Fasern. Die richtige PSA, wie z. B. eine Schutzbrille, die gegen die verwendeten Wellenlängen beständig ist, sollte bei der Verwendung des Lasers immer getragen werden, und andere Laborbenutzer in der Nähe des Lasers sollten sich ebenfalls in PSA befinden. Obwohl die in diesen Schritten aufgeführten Faserlängen empfohlene Längen sind, können Benutzer jede Länge ausprobieren, die ihren Bedürfnissen entspricht. Der Anwender muss eine der folgenden Spitzenvorbereitungsmethoden wählen, da das Scherenschneiden allein nicht ausreicht, um die Elektrode wieder freizulegen25.
8. Poly(3,4-ethylendioxythiophen):p-Toluolsulfonat (PEDOT:pTS) leitfähige Beschichtung zur Senkung der Impedanz
9. Verbinden von Masse- und Referenzdrähten
10. Chirurgischer Eingriff
HINWEIS: Rattenkortex wurde verwendet, um die Wirksamkeit der UV-Laser-präparierten Fasern zu testen, da dies zuvor beschrieben wurde7,20. Diese Sonden arbeiten aufgrund ihrer ähnlichen Geometrie und Impedanz für Löselampen vorbereitete Fasern im Nerv. Diese Operation wurde mit einer Fülle von Vorsicht durchgeführt, um zu bestätigen, dass der UV-Laser die Reaktion der Elektroden nicht verändert.
11. Spike-Sortierung
12. Rasterelektronenmikroskopische Bildgebung (REM)
HINWEIS: Dieser Schritt macht Arrays unbrauchbar und sollte nur verwendet werden, um die Ergebnisse der Spitzenbehandlung zu überprüfen, um zu überprüfen, ob die Arrays ordnungsgemäß verarbeitet werden. Dieser Schritt muss nicht ausgeführt werden, um ein erfolgreiches Array zu erstellen. Im Folgenden finden Sie einen allgemeinen Überblick über den SEM-Prozess. Benutzer, die SEM zuvor nicht verwendet haben, sollten jedoch Hilfe von einem geschulten Benutzer erhalten.
Tipp Validierung: REM-Bilder
Frühere Arbeiten20 zeigten, dass das Schneiden von Scheren zu unzuverlässigen Impedanzen führte, da Parylen c über die Aufnahmestelle gefaltet wurde. Das Scherenschneiden wird hier nur verwendet, um Fasern vor der Verarbeitung mit einem zusätzlichen Finish-Schneidverfahren auf die gewünschte Länge zu schneiden. REM-Bilder der Spitzen wurden verwendet, um die exponierte Kohlenstofflänge und die Spitzengeometrie zu bestimmen (
Materialsubstitutionen
Während alle verwendeten Materialien in der Materialtabelle zusammengefasst sind, müssen nur sehr wenige der Materialien von bestimmten Anbietern stammen. Das Flex Array-Board muss vom aufgeführten Anbieter stammen, da dieses das einzige Unternehmen ist, das das flexible Board drucken kann. Der Flex Array Connector muss ebenfalls bei dem aufgeführten Anbieter bestellt werden, da es sich um einen proprietären Connector handelt. Parylen C wird als Isoliermate...
Die Autoren erklären, dass sie keine konkurrierenden finanziellen Interessen haben.
Diese Arbeit wurde von den National Institutes of Neurological Disorders and Stroke (UF1NS107659 und UF1NS115817) und der National Science Foundation (1707316) finanziell unterstützt. Die Autoren würdigen die finanzielle Unterstützung des University of Michigan College of Engineering und die technische Unterstützung des Michigan Center for Materials Characterization und des Van Vlack Undergraduate Laboratory. Die Autoren danken Dr. Khalil Najafi für den Einsatz seines Nd:YAG-Lasers und der Lurie Nanofabrication Facility für den Einsatz ihrer Parylene C-Abscheidungsmaschine. Wir möchten uns auch bei Specialty Coating Systems (Indianapolis, IN) für ihre Hilfe bei der kommerziellen Beschichtungsvergleichsstudie bedanken.
Name | Company | Catalog Number | Comments |
3 prong clams | 05-769-6Q | Fisher | Qty: 2 Unit Cost (USD): 20 |
3,4-ethylenedioxythiophene (25 g) (PEDOT) | 96618 | Sigma-Aldrich | Qty: 1 Unit Cost (USD): 102 |
353ND-T Epoxy (8oz)++ (ZIF and Wide Board Only) | 353ND-T/8OZ | Epoxy Technology | Qty: 1 Unit Cost (USD): 48 |
Ag/AgCl (3M NaCl) Reference Electrode (pack of 3) | 50-854-570 | Fisher | Qty: 1 Unit Cost (USD): 100 |
Autolab | PGSTAT12 | Metrohm | |
Blowtorch | 1WG61 | Grainger | Qty: 1 Unit Cost (USD): 36 |
Carbon Fibers | T-650/35 3K | Cytec Thornel | Qty: 1 Unit Cost (USD): n/a |
Carbon tape | NC1784521 | Fisher | Qty: 1 Unit Cost (USD): 27 |
Cotton Tipped Applicator | WOD1002 | MediChoice | Qty: 1 Unit Cost (USD): 0.57 |
Delayed Set Epoxy++ | 1FBG8 | Grainger | Qty: 1 Unit Cost (USD): 3 |
DI Water | n/a | n/a | Qty: n/a Unit Cost (USD): n/a |
Dumont Tweezers #5 | 50-822-409 | Fisher | Qty: 1 Unit Cost (USD): 73 |
Flex Array** | n/a | MicroConnex | Qty: 1 Unit Cost (USD): 68 |
Flux | SMD291ST8CC | DigiKey | Qty: 1 Unit Cost (USD): 13 |
Glass Capillaries (pack of 350) | 50-821-986 | Fisher | Qty: 1 Unit Cost (USD): 60 |
Glass Dish | n/a | n/a | Qty: 1 Unit Cost (USD): n/a |
Hirose Connector (ZIF Only) | H3859CT-ND | DigiKey | Qty: 2 Unit Cost (USD): 2 |
Light-resistant Glass Bottle | n/a | Fisher | Qty: 1 Unit Cost (USD): n/a |
Micropipette Heating Filiment | FB315B | Sutter Instrument Co | Qty: 1 Unit Cost (USD): n/a |
Micropipette Puller | P-97 | Sutter Instrument Co | Qty: 1 Unit Cost (USD): n/a |
Nitrile Gloves (pack of 200) | 19-041-171C | Fisher | Qty: 1 Unit Cost (USD): 47 |
Offline Sorter software | n/a | Plexon | Qty: 1 Unit Cost (USD): n/a |
Omnetics Connector* (Flex Array Only) | A79025-001 | Omnetics Inc | Qty: 1 Unit Cost (USD): 35 |
Omnetics Connector* (Flex Array Only) | A79024-001 | Omnetics Inc | Qty: 1 Unit Cost (USD): 35 |
Omnetics to ZIF connector | ZCA-OMN16 | Tucker-Davis Technologies | Qty: 1 Unit Cost (USD): n/a |
Pin Terminal Connector (Wide Board Only) | ED11523-ND | DigiKey | Qty: 16 Unit Cost (USD): 10 |
Probe storage box | G2085 | Melmat | Qty: 1 Unit Cost (USD): 2 |
Razor Blade | 4A807 | Grainger | Qty: 1 Unit Cost (USD): 2 |
SEM post | 16327 | lnf | Qty: 1 Unit Cost (USD): 3 |
Silver Epoxy (1oz)++ | H20E/1OZ | Epoxy Technology | Qty: 1 Unit Cost (USD): 125 |
Silver GND REF wires | 50-822-122 | Fisher | Qty: 1 Unit Cost (USD): 423.2 |
Sodium p-toulenesulphonate(pTS)- 100g | 152536 | Sigma-Aldrich | Qty: 1 Unit Cost (USD): 59 |
Solder | 24-6337-9703 | DigiKey | Qty: 1 Unit Cost (USD): 60 |
Soldering Iron Tip | T0054449899N-ND | Digikey | Qty: 1 Unit Cost (USD): 13 |
Soldering Station | WD1002N-ND | Digikey | Qty: 1 Unit Cost (USD): 374 |
SpotCure-B UV LED Cure System | n/a | FusionNet LLC | Qty: 1 Unit Cost (USD): 895 |
Stainless steel rod | n/a | n/a | Qty: 1 Unit Cost (USD): n/a |
Stir Plate | n/a | Fisher | Qty: 1 Unit Cost (USD): n/a |
Surgical Scissors | 08-953-1B | Fisher | Qty: 1 Unit Cost (USD): 100 |
TDT Shroud (ZIF Only) | Z3_ZC16SHRD_RSN | TDT | Qty: 1 Unit Cost (USD): 3.5 |
Teflon Tweezers | 50-380-043 | Fisher | Qty: 1 Unit Cost (USD): 47 |
UV & Visible Light Safety Glassees | 92522 | Loctite | Qty: 1 Unit Cost (USD): 45 |
UV Epoxy (8oz)++ (Flex Array Only) | OG142-87/8OZ | Epoxy Technology | Qty: 1 Unit Cost (USD): 83 |
UV Laser | n/a | WER | Qty: 1 Unit Cost (USD): 30 |
Weigh boat (pack of 500) | 08-732-112 | Fisher | Qty: 1 Unit Cost (USD): 58 |
Wide Board+ | n/a | Advanced Circuits | Qty: 1 Unit Cost (USD): 3 |
ZIF Active Headstage | ZC16 | Tucker-Davis Technologies | Qty: 1 Unit Cost (USD): 925 |
ZIF Passive Headstage | ZC16-P | Tucker-Davis Technologies | Qty: 1 Unit Cost (USD): 625 |
ZIF* | n/a | Coast to Coast Circuits | Qty: 1 Unit Cost (USD): 9 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten