Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Ex-situ-Magnetfelduntersuchungen können direkt Bulk- und lokale Informationen über eine magnetische Elektrode liefern, um ihren Ladungsspeichermechanismus Schritt für Schritt aufzudecken. In dieser Arbeit werden Elektronenspinresonanz (ESR) und magnetische Suszeptibilität demonstriert, um die Bewertung paramagnetischer Spezies und ihrer Konzentration in einem redoxaktiven metallorganischen Gerüst (MOF) zu überwachen.

Zusammenfassung

Die elektrochemische Energiespeicherung war in den letzten 5 Jahren eine viel diskutierte Anwendung von redoxaktiven metallorganischen Gerüstverbindungen (MOFs). Obwohl MOFs eine hervorragende Leistung in Bezug auf gravimetrische oder flächenhafte Kapazität und Zyklenstabilität aufweisen, sind ihre elektrochemischen Mechanismen leider in den meisten Fällen nicht gut verstanden. Traditionelle spektroskopische Techniken wie die Röntgenphotoelektronenspektroskopie (XPS) und die Feinstruktur der Röntgenabsorption (XAFS) haben nur vage und qualitative Informationen über Valenzänderungen bestimmter Elemente geliefert, und die auf dieser Information basierenden Mechanismen sind oft höchst umstritten. In diesem Artikel berichten wir über eine Reihe standardisierter Methoden, darunter die Herstellung elektrochemischer Festkörperzellen, elektrochemische Messungen, die Demontage von Zellen, die Sammlung elektrochemischer MOF-Zwischenprodukte und physikalische Messungen der Zwischenprodukte unter dem Schutz von Inertgasen. Durch die Verwendung dieser Methoden zur quantitativen Klärung der Elektronen- und Spinzustandsentwicklung innerhalb eines einzigen elektrochemischen Schritts von redoxaktiven MOFs kann man einen klaren Einblick in die Natur elektrochemischer Energiespeichermechanismen nicht nur für MOFs, sondern auch für alle anderen Materialien mit stark korrelierten elektronischen Strukturen geben.

Einleitung

Seit der Einführung des Begriffs metallorganisches Gerüst (MOF) in den späten 1990er Jahren und insbesondere in den 2010er Jahren sind die repräsentativsten wissenschaftlichen Konzepte zu MOFs aus ihrer strukturellen Porosität entstanden, einschließlich Gastverkapselung, Trennung, katalytische Eigenschaften und Molekülerkennung 1,2,3,4 . In der Zwischenzeit erkannten Wissenschaftler schnell, dass es für MOFs unerlässlich ist, auf Reize reagierende elektronische Eigenschaften zu besitzen, um sie in moderne intelligente Geräte zu integrieren. ....

Protokoll

1. Herstellung von Elektroden

  1. Synthese von Cu-THQ MOF
    ANMERKUNG: Das polykristalline Cu-THQ-MOF-Pulver wurde mittels einer hydrothermalen Methode nach den zuvor veröffentlichten Verfahren 14,20,23 synthetisiert.
    1. Geben Sie 60 mg Tetrahydroxychinon in eine 20-ml-Ampulle und fügen Sie dann 10 ml entgastes Wasser hinzu. In einer separaten Durchstechflasche aus Glas werden 110 mg Kupfer(II)-nitrattrihydrat in weiteren 10 ml entgastem Wasser gelöst. 46 μl des konkurrierenden Liganden Ethylendiamin werden mit einer Pipette zugegeben.
      ....

Repräsentative Ergebnisse

Unsere bisherigen Arbeiten beinhalteten eine detaillierte Diskussion der ex situ ESR-Spektroskopie und ex situ magnetischen Suszeptibilitätsmessungen für elektrochemisch zykliertes CuTHQ20. Hier präsentieren wir die repräsentativsten und detailliertesten Ergebnisse, die nach dem in diesem Artikel beschriebenen Protokoll erzielt werden können.

Diskussion

Um Kathoden herzustellen, ist es notwendig, das aktive Material mit leitfähigem Kohlenstoff zu mischen, um eine geringe Polarisation während des elektrochemischen Prozesses zu erreichen. Das Kohlenstoffadditiv ist der erste kritische Punkt für die Ex-situ-Magnetometrie ; Wenn der Kohlenstoff Radikaldefekte aufweist, kann das Auftreten des elektrochemisch induzierten organischen Radikals im ESR-Spektrum nicht beobachtet werden. Dies macht es schwierig, die Spinkonzentration oder die Konzentration organischer R.......

Offenlegungen

Die Autoren haben keine Interessenkonflikte zu erklären.

Danksagungen

Diese Studie wurde von einem KAKENHI Grant (JP20H05621 der Japan Society for the Promotion of Science (JSPS) unterstützt. Z. Zhang bedankt sich auch bei der Tatematsu Foundation und dem Toyota Riken-Stipendium für die finanzielle Unterstützung.

....

Materialien

NameCompanyCatalog NumberComments
1-Methyl-2-pyrrolidoneFUJIFILM Wako Chemicals139-17611Super Dehydrated
1mol/L LiBF4 EC:DEC (1:1 v/v%)KishidaLBG-96533electrolyte
4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxylFUJIFILM Wako Chemicals089-04191TEMPOL, for Spin Labeling 
Ampule tubeMaruemu Corporation5-124-0520mL
Carbon black, Super P ConductiveAlfa AesarH30253
Conductive Carbon BlackMitsubishi Chemical
Copper (II) Nitrate TrihydrateFUJIFILM Wako Chemicals033-12502deleterious substances
Dimethyl CarbonateFUJIFILM Wako Chemicals046-31935battery grade
EthylenediamineFUJIFILM Wako Chemicals053-00936deleterious substances
Graphene NanoplateletsTokyo Chemical IndustryG04426-8nm(thick), 15µm(wide)
Poly(vinylidene fluoride)Sigma Aldrich182702
Potassium BromideFUJIFILM Wako Chemicals165-17111for Infrared Spectrophotometry
Sodium Alginate FUJIFILM Wako Chemicals199-09961500-600 cP
SQUID MagnetometerQuantum DesignMPMS-XL 5
Tetrahydroxy-1,4-benzoquinone HydrateTokyo Chemical IndustryT1090
X-Band ESRJEOLJES-F A200

Referenzen

  1. Lee, J., et al. Metal-organic framework materials as catalysts. Chemical Society Reviews. 38 (5), 1450-1459 (2009).
  2. Dolgopolova, E. A., Rice, A. M., Martin, C. R., Shustova, N. B. Photochemistry and photophysics of MOFs:....

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

ChemieHeft 196

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten