A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol presents a method to isolate RNA from Pseudomonas aeruginosa biofilms grown in chamber slides for high throughput sequencing.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes infections in the airways of cystic fibrosis (CF) patients. P. aeruginosa is known for its ability to form biofilms that are protected by a matrix of exopolysaccharides. This matrix allows the microorganisms to be more resilient to external factors, including antibiotic treatment. One of the most common methods of biofilm growth for research is in microtiter plates or chambered slides. The advantage of these systems is that they allow for the testing of multiple growth conditions, but their disadvantage is that they produce limited amounts of biofilm for RNA extraction. The purpose of this article is to provide a detailed, step by step protocol on how to extract total RNA from small amounts of biofilm of sufficient quality and quantity for high throughput sequencing. This protocol allows for the study of gene expression within these biofilm systems.
Most chronic bacterial infections, such as pulmonary infections in cystic fibrosis (CF) patients and prosthesis related infections, are characterized by the growth of organisms within biofilms. Biofilms1 are communities of bacteria encased in a matrix composed primarily of polysaccharides2. Bacteria within biofilms can be slow growing, metabolically dormant, and in anaerobic, hypoxic conditions. Biofilms are more resistant to antibiotics due to factors such as decreased antibiotic penetration, increased expression of drug efflux pumps, and decreased cell division3. For these and other reasons, the....
The Research Ethics Board (REB) is required for the collection and processing of sputum samples from human subjects. This study was approved by the Hospital for Sick Children (REB#1000019444). Research Ethics Board (REB) is required to collect and store sputum samples from human subjects. These studies were approved by the Hospital for Sick Children REB#1000058579.
1. Biofilm formation
The general overview of the method is shown in Figure 1. We previously used 8-well chamber slides to grow P. aeruginosa biofilms and expose them to antibiotics before then examining them via confocal microscopy at different time points12,13. This method can be used to extract total RNA directly from biofilms grown in this system in order to study gene expression changes post treatment. This protocol has been optimized for
Total RNA is successfully extracted from 17 different bacterial biofilm samples in triplicate, yielding a total of 51 samples. The forty-nine RNA libraries are pooled and successfully sequenced. Overall, this validates our quality criteria with a 96 % success rate even though more than half the samples are considered to be low abundance and of sub-optimal quality34,35,36,37.
Author contributions: P.W., Y.Y. and V.W were involved in conceptualizing the study. K.G., L.J., A.M. and P.W. optimized the lab protocols. Funding for K.G. was supported by the Student Work Placement Program subsidy through BioTalent Canada.
....Name | Company | Catalog Number | Comments |
Agilent 2100 Bioanalyzer | Agilent | G2939BA | Automated electrophoresis of biomolecules |
Agilent RNA 6000 pico kit | Agilent | 5067-1513 | High sensitivity RNA electrophoresis chip to generate a RIN |
DNA/RNA Lysis Buffer | Zymo Research | D7001-1-50 | A guanidinium thiocyanate and N-Lauroylsarcosine-based lysis buffer sold as part of a nucleic acid purification kit |
DNA/RNA Prep Buffer | Zymo Research | D7010-2-10 | A guanidine HCl and ethanol buffer used for purification of DNA and RNA |
DNA/RNA Shield | Zymo Research | R1100-50 | DNA and RNA preservation/protection reagent |
DNA/RNA Wash Buffer | Zymo Research | D7010-3-6 | A salt and ethanol buffer used for purification of DNA and RNA |
DNBSEQ G-400RS | MGI | G-400RS | High throughput sequencer |
MGIEasy RNA Directional Library Prep Set | MGI | 1000006386 | Generate libraries for MGI high-throughput sequencing platforms from total RNA. |
Mini-Beadbeater-96 | BioSpec | 1001 | A high energy, high throughput cell disrupter |
NEBNext rRNA Depletion Kit (bacteria) | New England Biolabs | E7850X | Efficient and specific depletion of bacterial rRNA (5S, 16S, 23S) |
Nunc Lab-Tek II chamber slide system | Thermo Fisher Scientific | 154534 | 8-well chamber slide with removable wells |
Qubit Fluorometer | Thermo Fisher Scientific | Q33238 | Fluorometer for DNA, RNA and proteins |
Qubit RNA HS Assay Kit | Thermo Fisher Scientific | Q32852 | High sensitivity fluorometric assay to measure RNA concentration |
Spin-Away Filters | Zymo Research | C1006-50-F | Silica-based spin column primarily used to bind or remove genomic DNA |
Sterile inoculation loops, 1 uL | Sarstedt | 86.1567.050 | Sterile, disposable inoculation loops for manipulation of microorganisms |
ZR BashingBead Lysis tubes | Zymo Research | S6003-50 | 2 mL tubes containing 0.1 and 0.5 mm bead lysis matrix for homogenizing biological samples |
Zymo Spin IIICG Columns | Zymo Research | C1006-50-G | Silica-based spin column for purification of DNA and RNA |
Zymo-Spin III-HRC Filters | Zymo Research | C1058-50 | Remove inhibitors such as polyphenolic compounds, humic/fulvic acids, tannins, melanin, etc. |
Zymobiomics DNA/RNA Miniprep kit | Zymo Research | R2002 | DNA and RNA dual extraction kit |
Zymobiomics HRC Prep solution | Zymo Research | D4300-7-30 | To be used with Zymo-Spin III-HRC Filters to remove PCR inhibitors |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved