A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Bacterial glycogen structure is greatly impacted by extraction methods which may result in molecular degradation and/or biased sampling. It is essential to develop methods to minimize these problems. Here, four extraction methods have been compared using size distribution and chain length distribution as key criteria for minimizing extraction artifacts.
Currently, there exist a variety of glycogen extraction methods, which either damage glycogen spatial structure or only partially extract glycogen, leading to the biased characterization of glycogen fine molecular structure. To understand the dynamic changes of glycogen structures and the versatile functions of glycogen particles in bacteria, it is essential to isolate glycogen with minimal degradation. In this study, a mild glycogen isolation method is demonstrated by using cold-water (CW) precipitation via sugar density gradient ultra-centrifugation (SDGU-CW). The traditional trichloroacetic acid (TCA) method and potassium hydroxide (KOH) method were also performed for comparison. A commonly used lab strain, Escherichia coli BL21(DE3), was used as a model organism in this study for demonstration purposes. After extracting glycogen particles using different methods, their structures were analyzed and compared through size exclusion chromatography (SEC) for particle size distribution and fluorophore-assisted capillary electrophoresis (FACE) for linear chain length distributions. The analysis confirmed that glycogen extracted via SDGU-CW had minimal degradation.
Glycogen is a highly branched polysaccharide that consists of glucosyl residues and also a small but significant amount of proteins, in which all glucosyl residues are linked together via α-1,4-glycosidic bonds in linear chains and α-1,6-glycosidic bonds at branching points1. The structure of glycogen particles is generally divided into three hierarchies: 1) short-chain oligomers, 2) spherical β particles (~20 nm in diameter), and 3) large rosette-shaped α particles aggregated together by β particles, the diameter of which ranges roughly up to 300 nm. Recently, it has been found that glycogen α particles h....
1. Bacteria culture and collection
Size distribution of glycogen particles
A series of studies have shown that glycogen α particles in the diabetic liver are fragile and easily broken apart in the hydrogen bond disruptor DMSO11,12,13,14. The present study tested how particle size and structural stability changed for bacterial glycogen extracted through four different methods. All glycogen samples from.......
Glycogen is an important energy reserve that has been identified in many bacteria16. To dissect the physiological functions of glycogen particles, it is essential to have a better understanding of the fine structure of glycogen molecules. So far, a variety of methods have been developed to extract glycogen from bacterial culture. However, different size distributions of glycogen particles have been observed from different extraction methods, which suggests damaged glycogen structure. Thus, it is n.......
We are greatly thankful to Professor Robert G. Gilbert from the University of Queensland and Yangzhou University who provided insights and expertise that greatly assisted the completion of this study. We acknowledge the financial support of the National Natural Science Foundation of China (No. 31900022, No. 32171281), Natural Science Foundation of Jiangsu Province (No. BK20180997), Young Science and Technology Innovation Team of Xuzhou Medical University (No. TD202001), and Jiangsu Qinglan Project (2020).
....Name | Company | Catalog Number | Comments |
Equipment | |||
Agilent 1260 infinity SEC system | Agilent | 1260 infinity II | Particle size distribution |
Analytical column | PSS | 10-1000 | - |
Centrifuge | Eppendorf | 5420 | - |
Filter membrane | Cambio | Km-0220 | - |
Fluorescence-assisted capillary electrophoresis system | Beckman Coulter | - | Chain length distribution |
Freeze dryer | Xinzhi | SCIENTZ-10N | Lyophilization of bacteria and glycogen |
Freezer | Thermo Fisher | Forma 900 | Sample storage |
Guard column | PSS | SUPPERMA | - |
Incubator | Thermo Fisher | PR505750R-CN | - |
Low-speed large-capacity centrifuge | Hexi | HR/T20MM | Sample centrifugation |
Multiskan FC microplate reader | Thermo Fisher | 1410101 | - |
Optima XPN ultracentrifuge | Beckman | XPN-100/90/80 | For glycogen |
Oscillator | Xinbao | SHZ-82 | - |
PA-800 Plus System | Beckman Coulter | A66528 | - |
pH meter | Mettler Toledo | FE28 -TRIS | - |
Refractive index detector | Wyatt | Optilab T-rEX | - |
Refrigerator | Haier | BCD-406WDPD | - |
Thermomixer | Shanghai Jingxin | JXH-100 | Sample incubation |
Transmission electron microscope | Hitachi Corporation | H-7000 | Glycogen particle morphology |
Ultracentrifuge tube | Beckman | 355651 | - |
Ultrasonic cell crusher | Ningbo Xinzhi | Scientz-IID | Bacteria disruptor |
Ultrasonic oscillating water bath | Jietuo | JT-1027HTD | - |
Vortex mixer | Tiangen | OSE-VX-01 | - |
Water system | Merck Millipore | H2O-MM-UV-T | Deionized water |
Material | |||
8-Aminopyrene-1,3,6-Trisulfonic Acid Trisodium Salt | Sigma-Aldrich | 196504-57-1 | - |
Absolute ethanol | Guoyao | 10009228 | - |
Agar powder | Solarbio | A1890 | - |
Alpha-amylase | Megazyme | E-BLAAM-40ML | - |
Amyloglucosidase | Megazyme | E-AMGDF-40ML | - |
cOmplete Mini | Roche | 4693159001 | - |
D-(+)Glucose | Sigma-Aldrich | G8270-1kg | - |
D-Glucose Assay Kit (GOPOD Format) | Megazyme | K-GLUC | Glycogen quantification |
Dimethyl sulfoxide | Vicmed | Vic147 | Chaotropic agent |
E. coli BL21(DE3) | Tiangen | CB105-02 | - |
Ethylene diamine tetra-acetic acid | Vicmed | Vic1488 | - |
Glacial acetic acid | Guoyao | 10000218 | - |
Glycerol | Guoyao | 10010618 | Bacterial storage |
Hydrochloric acid | Guoyao | 10011008 | - |
Hydroxymethyl aminomethane | Sigma-Aldrich | V900483-500g | - |
Isoamylase | MegaZyme | 9067-73-6 | Glycogen debranch |
Lithium chloride | Sigma-Aldrich | 62476-100g | - |
M9, Minimal Salts, 5× | Sigma-Aldrich | M6030-1kg | Bacterial culture |
Potassium hydroxide | Guoyao | 10017008 | - |
Pullulan standard | PSS | - | - |
Sodium acetate trihydrate | Guoyao | 10018718 | - |
Sodium azide | Sigma-Aldrich | 26628-22-8 | - |
Sodium chloride | Guoyao | 10019318 | Bacterial culture |
Sodium cyanoborohydride | Huaweiruike | hws001297 | - |
Sodium diphosphate | Sigma-Aldrich | 71515-250g | - |
Sodium Fluoride | Macklin | S817988-250g | - |
Sodium hydroxide | Guoyao | 10019762 | - |
Sodium nitrate | Guoyao | 10019928 | - |
Sodium pyrophosphate | Sigma-Aldrich | V900195-500g | - |
Sucrose | Guoyao | 10021463 | - |
Trichloroacetic acid | Guoyao | 40091961 | - |
Tryptone | Oxoid | LP0042 | Bacterial culture |
Yeast Extract | Oxoid | LP0021 | Bacterial culture |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved