The prediction of the coreceptor usage of HIV-1 is required for the administration of a new class of antiretroviral drugs, i.e. coreceptor antagonists. It can be performed by sequence analysis of the env gene and subsequent interpretation through an internet based interpretation system (geno2pheno[coreceptor]).
The constricting cuff presented in this article is designed to induce atherosclerosis in the murine common carotid artery. Due to the conical shape of its inner lumen the implanted cuff generates well-defined regions of low, high and oscillatory shear stress triggering the development of atherosclerotic lesions of different inflammatory phenotypes.
We herein present a rat renal transplantation model to non-invasively assess acute allograft rejection using positron emission tomography with 18F-fluorodeoxyglucose.
Protocols for neuronal differentiation of pluripotent human stem cells (hPSCs) are often time-consuming and require substantial cell culture skills. Here, we have adapted a small molecule-based differentiation procedure to a multititre plate format, allowing simple, rapid, and efficient generation of human neurons in a controlled manner.
The described comparative, quantitative proteomic approach aims at obtaining insights into the composition of multiprotein complexes under different conditions and is demonstrated by comparing genetically different strains. For quantitative analysis equal volumes of different fractions from a sucrose density gradient are mixed and analyzed by mass spectrometry.
Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis. C57BL/6 mice are immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 (MOG35-55), resulting in an ascending flaccid paralysis caused by autoreactive immune cells in the central nervous system. Protocols for disease induction and monitoring will be discussed.
Brain microvascular endothelial cells (BMEC) are interconnected by specific junctional proteins forming a highly regulated barrier separating blood and the central nervous system (CNS), the so-called blood-brain-barrier (BBB). The isolation of primary murine brain microvascular endothelial cells, as discussed in this protocol, enables detailed in vitro studies of the BBB.
To address mechanisms of demyelination and neuronal apoptosis in cortical lesions of inflammatory demyelinating disorders, different animal models are used. We here describe an ex vivo approach by using oligodendrocyte-specific CD8+ T-cells on brain slices, resulting in oligodendroglial and neuronal death. Potential applications and limitations of the model are discussed.
Retinal pigment epithelium (RPE) replacement strategies and gene-based therapy are considered for several retinal degenerative conditions. For clinical translation, large eye animal models are required to study surgical techniques applicable in patients. Here we present a rabbit model for subretinal surgery geared towards RPE transplantation, which is versatile and cost-efficient.
Accurate assessment of anti-inflammatory effects is of utmost importance for the evaluation of potential new drugs for the treatment of inflammatory bowel disease. Digital holographic microscopy provides assessment of inflammation in murine and human colonic tissue samples as well as automated multimodal evaluation of epithelial wound healing in vitro.
Here, we describe an in vitro murine model of the blood-brain barrier that makes use of impedance cell spectroscopy, with a focus on the consequences on endothelial cell integrity and permeability upon interaction with activated T cells.
Here, we show an enzymatic approach to isolate primary hepatocytes from adult mice, and we describe the quantification of an inflammatory response using ELISA and real-time PCR.
Here, we describe a human blood-brain barrier model enabling to investigate lymphocyte transmigration into the central nervous system in vitro.
A detailed protocol to perform a titration ELISA is described. Moreover, a novel algorithm is presented to evaluate titration ELISAs and to obtain a dissociation constant of binding of a soluble ligand to a microtiter plate-immobilized receptor.
Here, we present an experimental protocol that can be employed to determine the binding affinities and mode of interaction of label-free phospholipid-binding protein annexin A2 with immobilized solid-supported bilayers (SLB) by simultaneously measuring the mass uptake and the viscoelastic properties of the protein annexin A2.
Microvascular endothelial cells of skeletal muscles (MMEC) shape the inner wall of muscle capillaries and regulate both, exchange of fluids/molecules and migration of (immune) cells between muscle tissue and blood. Isolation of primary murine MMEC, as described here, enables comprehensive in vitro investigations of the "myovascular unit".
The goal of this protocol is to establish a 3D in vitro model to study the differentiation of cancer-associated fibroblasts (CAFs) in a tumor bulk-like environment, which can be addressed in different analysis systems, such as immunofluorescence, transcriptional analysis and life cell imaging.
Here, a protocol is described for generating light-regulated and reversible protein patterns with high spatiotemporal precision at artificial lipid membranes. The method consists of the localized photoactivation of the protein iLID (improved light-inducible dimer) immobilized on model membranes that, under blue light, binds to its partner protein Nano (wild-type SspB).
ACERCA DE JoVE
Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados