JoVE Logo

Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

A novel semi-automated hybrid DNA extraction method for use with environmental poultry production samples was developed and demonstrated improvements over a common mechanical and enzymatic extraction method in terms of the quantitative and qualitative estimates of the total bacterial communities.

Resumen

La eficacia de los protocolos de extracción de ADN puede ser altamente dependiente de tanto el tipo de muestra que se está investigado y los tipos de análisis realizados aguas abajo. Teniendo en cuenta que el uso de nuevas técnicas de análisis de la comunidad bacteriana (por ejemplo, microbiomics, metagenómica) es cada vez más frecuente en las ciencias agrícolas y medioambientales y muchas muestras ambientales dentro de estas disciplinas puede ser physiochemically y microbiológicamente único (por ejemplo, muestras fecales y basura / ropa de cama de el espectro de la producción de aves de corral), los métodos de extracción de ADN apropiadas y eficaces deben ser elegidos cuidadosamente. Por lo tanto, un método de extracción de ADN híbrido automatizado semi-novela fue desarrollado específicamente para su uso con muestras de producción de aves de corral del medio ambiente. Este método es una combinación de los dos tipos principales de extracción de ADN: mecánica y enzimática. Una intensa etapa de homogeneización mecánica de dos pasos (utilizando perlas paliza específicamente formulado para ambienmuestras TAL) se añadió al principio del método de extracción de ADN enzimática "patrón oro" para muestras fecales para mejorar la eliminación de bacterias y el ADN de la matriz de la muestra y mejorar la recuperación de miembros de la comunidad bacterianas Gram-positivos. Una vez que se inició la parte de extracción enzimática del método híbrido, el proceso de purificación restante se automatizó usando una estación de trabajo robótica para aumentar el rendimiento y disminuir el error de muestra procesamiento de la muestra. En comparación con los métodos de extracción de ADN mecánicos y enzimáticos estrictas, este método híbrido novela proporciona el mejor rendimiento general combinado al considerar cuantitativa (qPCR utilizando 16S rRNA) y cualitativa (utilizando microbiomics) las estimaciones de las comunidades de bacterias totales en el tratamiento de las heces de aves de corral y las muestras de cama .

Introducción

When analyzing complex clinical or environmental samples (e.g., feces, soils), there are two main methodologies used for the extraction of DNA. The first is a mechanical disruption of the matrix using an intense bead-beating step, while the second is an enzymatic disruption of the matrix to chemically release bacterial cells and inhibit PCR inhibitors from the matrix simultaneously. Given the different means by which these two types of extraction methods work, it is not surprising that previous studies demonstrated that the appropriate DNA extraction method is both highly sample and analysis dependent. Comparative DNA extraction studies previously showed that some methods are more appropriate for improved DNA quality and quantity from environmental samples1-3, while others demonstrated improvements for community-level analyses such as denaturing gradient gel electrophoresis (DGGE)4-6, terminal restriction fragment length polymorphism (T-RFLP)7, automated ribosomal intergenic spacer analysis (ARISA)8, and phylogenetic microarrays9. Therefore, appropriate DNA extraction methods need to be used, or developed, according to the types of environmental samples and the types of analyses being performed on those samples, especially given the recent advancements in bacterial community analyses.

Next generation sequencing, in conjunction with more quantitative community assessments (e.g., quantitative PCR (qPCR)), is becoming more prevalent in the environmental and clinical sciences, however, very little research has been performed to determine the effect of DNA extraction methods on these data sets. Most DNA extraction comparison studies dealt with microbiomic community estimates from human or human model samples10,11, not agricultural animal samples. The few poultry-focused next generation sequencing studies dealt with specific metagenomic12,13 or microbiomic14 questions; they did not discuss the effect of DNA extraction method on the resulting microbiomic analyses. Considering the complex nature of environmental samples related to poultry production (e.g., feces, litter/bedding, pasture soil), DNA extraction methods need to be carefully selected. Poultry-related environmental samples are known to contain large numbers of PCR inhibitors and up to 500-fold DNA extract dilutions have been required for PCR and subsequent downstream analysis15-17. Therefore it is essential that DNA extraction methods be optimized for these types of samples in order to not only physically disrupt the matrix, but also to be able to reduce/eliminate the large number of inhibitors that are present.

The QIAamp DNA Stool Mini Kit, an enzymatic extraction method, has been considered the “gold standard” when extracting DNA from difficult gut/fecal samples1,18,19 and has been applied successfully to poultry environmental samples8,14. The enzymatic removal of PCR inhibitors through the use of a proprietary matrix is one of the greatest advantages of using this method for these types of environmental samples, as is the ability to significantly improve throughput (and reduce sample processing error) using automated workstations. One major disadvantage is the lack of a mechanical homogenization step to physically disassociate bacterial cells from the environmental matrix. When testing gut and fecal samples of non-poultry origin, the addition of a bead-beating or mechanical disruption step within a DNA extraction protocol significantly increased extraction efficiency9, DNA yield/quality1,4,5 and significantly improved downstream community analyses in terms of richness, diversity, and coverage5,6,11. These studies compared not only mechanical bead-beating methods to the “gold standard” enzymatic method, but some also added the mechanical bead-beating step to the enzymatic protocol to improve results6,9,11.

According to the results from the above studies, bacterial community analyses (both qualitative and quantitative) could be improved from poultry-related environmental samples through the addition of a mechanical homogenization step to the enzymatic method. Therefore, the goal of this study was twofold: (1) to develop a novel DNA extraction technique that utilizes the most desirable aspects of both the mechanical (powerful homogenization step) and enzymatic (PCR inhibitor removal and automation) extraction methods and (2) compare the quantitative (via qPCR) and qualitative (via microbiomics) bacterial community assessments of this novel method to representative mechanical and enzymatic methods.

Access restricted. Please log in or start a trial to view this content.

Protocolo

1. La homogeneización mecánica de Aves de Corral Ambiental muestras de producción

  1. Antes de la extracción, establezca un baño de agua a 95 ° C y permitir que el tiempo de baño de agua para llegar a esa temperatura.
  2. Pesar 0,33 g de suelo o material fecal en un tubo de 2 ml de lisado Matrix E.
    1. No exceda de 0,33 g de la muestra en el tubo, ya que esto hará que las siguientes soluciones para superar la capacidad del tubo.
    2. Descongele las muestras a temperatura ambiente antes de pesar.
    3. Con el fin de analizar un total de 1 g de suelo / heces, pésese 3 replicar 0,33 g de muestras para cada muestra ambiental individual.
    4. Almacene las muestras a -20 ° C dentro de los tubos cónicos de matriz antes de la extracción, si es necesario.
  3. Añadir 825 l de sodio tampón fosfato y 275 l de solución de PLS a un tubo de muestra. Mezclar utilizando un vórtex durante ~ 15 segundos y centrifugar las muestras a 14.000 xg durante 5 min.
  4. Decantar el supernatante y añadir 700 l de Buffer ASL. Mezclar utilizando un vórtex durante 5 seg.
    1. Asegúrese de que haya espacio de cabeza (~ 10% del volumen total) disponible en el tubo cónico en este punto. Si no hay espacio de cabeza, los tubos tendrán una tendencia a tener fugas durante la siguiente etapa de homogeneización que podría conducir a la contaminación cruzada y / o la pérdida de muestra.
  5. Colocar las muestras en un FastPrep 24 Instrumento, y homogeneizar las muestras a una velocidad de 6,0 m / s durante 40 s.
  6. Centrifugar la muestra homogeneizada a 14.000 xg durante 5 min. Transferir el sobrenadante a un tubo de microcentrífuga de 2 ml estéril.
  7. Para maximizar la recuperación de ADN de la muestra, repita los pasos 1.4 a 1.6, combinando los sobrenadantes en el mismo tubo de microcentrífuga estéril, 2 ml.

2. Inhibición enzimática de los inhibidores de homogeneizados de ejemplo

NOTA: Este protocolo utiliza el kit QIAamp ADN en heces Mini.

  1. Incubar lasobrenadante en un 95 ° C baño de agua durante 5 min para maximizar la recuperación de ADN de las células restantes en el sobrenadante.
    1. Incubar a 70 ° C para muestras que contienen organismos sobre todo Gram-negativos. Sin embargo, si los organismos Gram-positivos están presentes (que es el caso de las muestras de heces de aves de corral), se incuba a 95 ° C.
    2. Utilice clips de plástico de bloqueo en los tubos de microcentrífuga para asegurar que los tubos no se "pop" abierta y potencialmente perder volumen de la muestra como la presión puede acumularse en estos tubos de microcentrífuga sellados.
  2. Abra cada tubo de microcentrífuga para liberar los, re-capitalización de los tubos de microcentrífuga de presión y mezcle utilizando un vortex durante 15 segundos.
  3. Centrifugar la muestra a 14.000 xg durante 1 minuto, retirar 1,2 ml del sobrenadante y colocarlo en un nuevo tubo de microcentrífuga de 2 ml estéril.
  4. Añadir 1 ficha Inhibitex a cada muestra y mezclar utilizando un vórtice hasta que la muestra se convierte en un / líquido blanquecino uniforme blanco.
    1. Evite touching la pestaña Inhibitex mientras se coloca en el tubo de microcentrífuga que contiene la muestra. Para lograr esto, coloque el paquete de ampolla que contiene la ficha directamente sobre el tubo de microcentrífuga abierta y empuje suavemente la lengüeta del blister y en el tubo de microcentrífuga.
  5. Incubar la muestra durante 1 min a TA (~ 25 ° C) y se centrifuga a 14.000 xg durante 5 min.
  6. Transferir todo el líquido a un tubo de microcentrífuga de 1,5 ml estéril y se centrifuga a 14.000 xg durante 5 min.
    1. Evitar cualquier partículas restantes que pueden haber sedimentadas en el fondo del tubo de microcentrífuga al final de la etapa 2.5 cuando se transfiere el líquido.

3. Automated DNA Purification Uso de la estación de trabajo robótica QIAcube

NOTA: El número de consumibles de plástico, la disposición de los adaptadores de rotor de muestra dentro de la centrífuga, y los volúmenes requeridos de los tampones / soluciones dependen de la numero de muestras que están en ejecución.

  1. Añadir tubos de elución y tubos de filtro a las ranuras correspondientes dentro de los adaptadores de rotor. Para cada muestra, añadir 400 l de la ranura central del adaptador de rotor. Coloque los adaptadores del rotor de la centrífuga estación de trabajo en la disposición correcta de acuerdo con el número de muestras que se purificó.
    1. Asegúrese de que todas las tapas del tubo de microcentrífuga se fijan correctamente en el adaptador de rotor desde una de no hacerlo podría resultar en la esquila durante una de las etapas de centrifugación del protocolo de purificación.
  2. Añadir el número requerido de 1.000 ly 200 l de filtro consejos para la estación de trabajo, y rellenar las botellas de amortiguamiento suministrados con el volumen requerido de tampones.
    NOTA: Los tampones necesarios para este protocolo de purificación (AL, AW1, AW2, y AE) están contenidos en el kit QIAamp DNA Mini heces. El usuario necesita para suministrar el 100% de etanol que se necesita para el bu AWfertas y como una solución utilizada en el proceso de purificación.
  3. Añadir el volumen requerido de la solución de proteinasa K suministrado en un tubo de microcentrífuga de 1,5 ml estéril y colocarlo en la ranura A en la estación de trabajo. Además, añadir el número requerido (igual al número de muestras que se purificada) de 2 ml de seguridad de bloqueo de tubos de muestra de microcentrífuga de RB a la sección de agitador de la estación de trabajo.
    1. Asegúrese de que las tapas de los tubos de muestra se colocan de forma segura en las ranuras correspondientes en la estación de trabajo, ya que una no hacerlo resultará en un error cuando el equipo escanea inicialmente la estación de trabajo para asegurarse de que todos los plásticos y líquidos necesarios están disponibles para el pedido correr.
  4. El uso de la pantalla táctil en la estación de trabajo, seleccione el ADN de las heces - Taburete Humano - Protocolo de detección de patógenos, y leer a través de las pantallas siguientes para asegurarse de que la estación de trabajo se ha cargado correctamente. Una vez que todas las pantallas de verificación se pasan, seleccione Inicio para ejecutar este protocolo.
    1. Si la extracción de ADN de más de 12 muestras, iniciar el proceso de homogeneización (Paso 1) para el siguiente conjunto de muestras, ya que una racha de 12 muestras de toma ~ 72 min para completar en la estación de trabajo.
  5. Retire las muestras de los adaptadores de rotor, la tapa, y el lugar a -20 ° C hasta que sea necesario para los análisis posteriores posteriores.
    1. En este punto, combinar los 3 purificaciones repetidas para una muestra individual (un total analizado cantidad = 1 g) usando un sistema de centrifugación / basado en la evaporación. Combinar las repeticiones y re-eluyen a un volumen final de 100 l de tampón Tris-EDTA.

Access restricted. Please log in or start a trial to view this content.

Resultados

Para este estudio, los excrementos fecales frescas y muestras de cama se recuperaron de una casa comercial de pollos de engorde (~ 25.000 aves) en el sureste de Estados Unidos. Los pollos (Gallus gallus) fueron Cobb-500 cruza, y eran 59 días de edad en el momento del muestreo. Muestras fecales y basura frescas se recuperaron de cuatro áreas distintas dentro de la casa (cerca de la almohadilla de refrigeración, cerca de las líneas de bebedero / alimentadoras, entre las líneas de bebedero / alimentadoras, y ...

Access restricted. Please log in or start a trial to view this content.

Discusión

El método de extracción de ADN utilizado efectuarse las estimaciones totales de la comunidad bacteriana cuantitativos y cualitativos, tanto para las muestras fecales y basura, el apoyo a la muestra analiza la naturaleza depende de los métodos de extracción de ADN visto previamente 1,3,6. Tanto para las muestras fecales y basura, el orden de actuación de los métodos de extracción de ADN fue diferente para la cuantitativa (mecánica> Híbrido> enzimática) y el cualitativo (Enzimática> Híbrido...

Access restricted. Please log in or start a trial to view this content.

Divulgaciones

The authors have nothing to disclose.

Agradecimientos

The authors would like to acknowledge Latoya Wiggins and Katelyn Griffin for their assistance in sample acquisition, as well as Laura Lee Rutherford for their assistance in sampling and molecular analyses. We would also like to thank Sarah Owens from Argonne National Lab for microbiomic sample preparation and sequencing. These investigations were supported equally by the Agricultural Research Service, USDA CRIS Projects “Pathogen Reduction and Processing Parameters in Poultry Processing Systems” #6612-41420-017-00 and “Molecular Approaches for the Characterization of Foodborne Pathogens in Poultry” #6612-32000-059-00.

Access restricted. Please log in or start a trial to view this content.

Materiales

NameCompanyCatalog NumberComments
Lysing Matrix E tubeMPBio6914-050Different sizes available and the last 3 numbers of the cat. No. indicate size (-050 = 50 tubes, -200 = 200 tubes, -1000 = 1,000 tubes)
Sodium Phosphate SolutionMPBio6570-205Can be purchased individually, or also contained within the FastDNA Spin Kit for feces (Cat. No. 116570200)
PLS BufferMPBio6570-201
Buffer ASL (560 ml)Qiagen19082
FastPrep 24 homogenizerMPBio11600450048 x 2 ml HiPrep adapter (Cat. No. 116002527) available to double throughput of mechanical homogenization step
QIAamp DNA Stool Mini KitQiagen51504
QIAcube24 (110V)Qiagen9001292Preliminary results show that QIAcube HT (Cat. No. 9001793) can be used to improve throughput, but different consumables are required of this machine and more comparative work needs to be done.
Filter-Tips, 1,000 ml (1024)Qiagen990352
Filter-Tips, 200 ml (1024)Qiagen990332
QIAcube Rotor Adapters (10 x 24)Qiagen990394For 1.5 ml microcentrifuge tubes included with in the rotor adapter kit there is an alternative.  It is Sarstedt Micro tube 1.5 ml Safety Cap, Cat. No. 72.690
Sample Tubes RB (2 ml)Qiagen990381Alternative: Eppendorf Safe-Lok micro test tube, Cat. No. 022363352

Referencias

  1. Maukonen, J., Simoes, C., Saarela, M. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS microbiology ecology. 79, 697-708 (2012).
  2. Tang, J. N., et al. An effective method for isolation of DNA from pig faeces and comparison of five different methods. Journal of microbiological. 75, 432-436 (2008).
  3. McOrist, A. L., Jackson, M., Bird, A. R. A comparison of five methods for extraction of bacterial DNA from human faecal samples. Journal of microbiological. 50, 131-139 (2002).
  4. Ariefdjohan, M. W., Savaiano, D. A., Nakatsu, C. H. Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens. Nutrition journal. 9, 23(2010).
  5. Carrigg, C., Rice, O., Kavanagh, S., Collins, G., O'Flaherty, V. DNA extraction method affects microbial community profiles from soils and sediment. Applied microbiology and biotechnology. 77, 955-964 (2007).
  6. Smith, B., Li, N., Andersen, A. S., Slotved, H. C., Krogfelt, K. A. Optimising Bacterial DNA Extraction from Faecal Samples: Comparison of Three Methods. The Open microbiology journal. 5, 14-17 (2011).
  7. Claassen, S., et al. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. Journal of microbiological. 94, 103-110 (2013).
  8. Scupham, A. J., Jones, J. A., Wesley, I. V. Comparison of DNA extraction methods for analysis of turkey cecal microbiota. Journal of applied microbiology. 102, 401-409 (2007).
  9. Salonen, A., et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. Journal of microbiological methods. 81, 127-134 (2010).
  10. Peng, X., et al. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags. Journal of microbiological. 95, 455-462 (2013).
  11. Yuan, S., Cohen, D. B., Ravel, J., Abdo, Z., Forney, L. J. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PloS one. 7, 33865(2012).
  12. Qu, A., et al. Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome. PloS one. 3, 2945(2008).
  13. Sekelja, M., et al. Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Applied and environmental microbiology. 78, 2941-2948 (2012).
  14. Oakley, B. B., et al. The Poultry-Associated Microbiome: Network Analysis and Farm-to-Fork Characterizations. PloS one. 8, 57190(2013).
  15. Cook, K. L., Rothrock, M. J., Eiteman, M. A., Lovanh, N., Sistani, K. Evaluation of nitrogen retention and microbial populations in poultry litter treated with chemical, biological or adsorbent amendments. Journal of environmental management. 92, 1760-1766 (2011).
  16. Rothrock, M. J., Cook, K. L., Warren, J. G., Eiteman, M. A., Sistani, K. Microbial mineralization of organic nitrogen forms in poultry litters. Journal of environmental quality. 39, 1848-1857 (2010).
  17. Rothrock, M. J., Cook, K. L., Warren, J. G., Sistani, K. The effect of alum addition on microbial communities in poultry litter. Poultry science. 87, 1493-1503 (2008).
  18. Li, M., et al. Evaluation of QIAamp DNA Stool Mini Kit for ecological studies of gut microbiota. Journal of microbiological. 54, 13-20 (2003).
  19. Dridi, B., Henry, M., El Khechine, A., Raoult, D., Drancourt, M. High precalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PloS one. 4, 7063(2009).
  20. Harms, G., et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental science and technology. 37, 343-351 (2003).
  21. Rothrock, M. J. Comparison of microvolume DNA quantification methods for use with volume-sensitive environmental DNA extracts. Journal of natural and environmental sciences. 2, 34-38 (2011).
  22. Navas-Molina, J. A., et al. Methods in Enzymology. DeLong Edward, F. 531, Academic Press. 371-444 (2013).
  23. Caporaso, J. G., et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME journal. 6, 1621-1624 (2012).
  24. Caporaso, J. G., et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America. 108 Suppl 1, 4516-4522 (2011).
  25. Caporaso, J. G., et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 7, 335-336 (2010).
  26. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194-2200 (2011).
  27. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26, 2460-2461 (2010).
  28. DeSantis, T. Z., et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology. 72, 5069-5072 (2006).
  29. Caporaso, J. G., et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 26, 266-267 (2010).
  30. Price, M. N., Dehal, P. S., Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one. 5, 9490(2010).
  31. Cook, K. L., Rothrock, M. J., Lovanh, N., Sorrell, J. K., Loughrin, J. H. Spatial and temporal changes in the microbial community in an anaerobic swine waste treatment lagoon. Anaerobe. 16, 74-82 (2010).
  32. Cook, K. L., Rothrock, M. J., Warren, J. G., Sistani, K. R., Moore, P. A. Effect of alum treatment on the concentration of total and ureolytic microorganisms in poultry litter. Journal of environmental quality. 37, 2360-2367 (2008).
  33. Lovanh, N., Cook, K. L., Rothrock, M. J., Miles, D. M., Sistani, K. Spatial shifts in microbial population structure within poultry litter associated with physicochemical properties. Poultry science. 86, 1840-1849 (2007).

Access restricted. Please log in or start a trial to view this content.

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Biolog a MolecularN mero 94la extracci n de ADNlas aves de corralel medio ambientelas hecesbasurasemi autom ticosmicrobiomicsqPCR

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados