Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Here, we document the use of the soft agar colony formation assay to test the effects of a peptidylarginine deiminase (PADI) enzyme inhibitor, BB-Cl-amidine, on breast cancer tumorigenicity in vitro.
Given the inherent difficulties in investigating the mechanisms of tumor progression in vivo, cell-based assays such as the soft agar colony formation assay (hereafter called soft agar assay), which measures the ability of cells to proliferate in semi-solid matrices, remain a hallmark of cancer research. A key advantage of this technique over conventional 2D monolayer or 3D spheroid cell culture assays is the close mimicry of the 3D cellular environment to that seen in vivo. Importantly, the soft agar assay also provides an ideal tool to rigorously test the effects of novel compounds or treatment conditions on cell proliferation and migration. Additionally, this assay enables the quantitative assessment of cell transformation potential within the context of genetic perturbations. We recently identified peptidylarginine deiminase 2 (PADI2) as a potential breast cancer biomarker and therapeutic target. Here we highlight the utility of the soft agar assay for preclinical anti-cancer studies by testing the effects of the PADI inhibitor, BB-Cl-amidine (BB-CLA), on the tumorigenicity of human ductal carcinoma in situ (MCF10DCIS) cells.
Both non-transformed (normal) and transformed cells can readily proliferate in a 2D monolayer culture. This form of adherent cell growth is quite dissimilar from that which occurs in vivo where, in the absence of mitogenic stimulation, cells do not often rapidly divide within their microenvironment. The soft agar assay on the other hand is distinct from 2D culture systems because it quantifies tumorigenicity by measuring a cell’s ability to proliferate and form colonies in suspension within a semi-solid agarose gel1. In this setting, non-transformed cells are unable to rapidly propagate in the absence of anchorage to the extracellular matrix (ECM) and undergo apoptosis, a process known as anoikis. In contrast, cells that have undergone malignant transformation lose their anchorage dependence due to activation of signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/Akt and Rac/Cdc42/PAK. Therefore, these cells are able to grow and form colonies within the semi-solid soft agar matrix2.
A common use of the soft agar assay is to test whether specific compounds, such as PADI inhibitors, are able to suppress tumor growth in vitro. In general, colony count or colony sizes are quantitative read-outs from the assay that can be compared between control and treatment groups to assess differences in cellular tumorigenicity. Therefore, if one finds that colony formation is inversely correlated with increasing drug concentration, then a conclusion could be drawn that the drug is an effective inhibitor of tumorigenicity in vitro. On the other hand, if the drug does not affect colony formation, the drug is either not at the appropriate dosage or it is not an effective tumorigenic inhibitor. Aside from using a soft agar assay to test the anti-tumor effect of a drug, this assay can also be used to probe the relationship between a specific gene and tumorigenesis. For example, the effect of suppressing PADI2 expression on tumorigenicity can be addressed by PADI2-specific siRNA treatment.
PADIs are calcium-dependent enzymes that post-translationally modify proteins by converting positively charged arginine residues into neutrally charged citrulline in a process known as citrullination or deimination3-5. We have recently found that peptidylarginine deiminase 2 (PADI2) may function as a novel breast cancer biomarker and that PADI inhibitors represent candidate therapies for early stage breast cancers6. For example, we have previously demonstrated that a “pan-PADI” inhibitor, Cl-amidine, suppresses the proliferation of breast cancer cells using 2D monolayers and that the inhibitor suppressed the growth of 3D tumor spheroids6. In this report, we extend these studies, and highlight the utility of the soft agar assay, by testing the efficacy of a new PADI inhibitor, BB-CLA, in suppressing the growth of MCF10DCIS breast cancer colonies7. We note that we used MCF10DCIS cells for this experiment because they are oncogenic derivatives of non-transformed human MCF10A cells and because they contain high steady state levels of PADI2 protein8. We hypothesize that PADI2 enzymatic activity plays a key role in the tumorigenicity of this cell line and that BB-CLA-mediated inhibition of PADI2 activity will suppress cancer progression.
1. Preparación de 3% 2-hidroxietil agarosa
2. Preparación de la capa inferior: 0,6% en gel de agarosa
3. Preparación de la capa que contiene Cell-: 0,3% en gel de agarosa
4. Preparación de la capa de alimentación: 0,3% en gel de agarosa
5. Recolección de Datos
El ensayo de formación de colonias en agar blando se puede utilizar para una amplia gama de aplicaciones que documentan la tumorigenicidad de las células cancerosas. Una ventaja principal de esta técnica es que la matriz semi-sólido favorece selectivamente el crecimiento de células que pueden proliferar en una manera independiente de anclaje. Este rasgo se exhibe principalmente por las células cancerosas, pero no por las células normales. Utilizamos principalmente esta técnica para probar la eficacia de inhibici...
La tasa de formación de colonias en agar blando varía dependiendo del tipo de célula 9. Por lo tanto, el número de células para iniciar con debe ser optimizado y ajustado en consecuencia. Una gama de partida sugerido es de entre 5 x 10 02 al 01 x 10 4 células por pocillo utilizando una placa de 6 pocillos. Además, tamaño de las colonias varía en función de la tasa de crecimiento de cada célula. Por lo tanto, se necesita un predefinido un punto de corte para el tamaño de colon...
The authors have nothing to disclose.
We are thankful to Dr. Richard Cerione, Dr. Marc Antonyak, and Kelly Sullivan, Cornell University, for providing technical advice, and to Dr. Gerlinde Van de Walle, Cornell University, for sharing their Olympus CKX41 inverted microscope.
Name | Company | Catalog Number | Comments |
Zeiss Axiopot | Carl Zeiss Microscopy | 1021859251 | |
Inverted Microscope | Olympus | CKX41 | |
DMEM/F-12 | Lonza BioWhittaker | 12-719F | |
HyClone Donor Equine Serum | Fisher Scientific | SH30074.03 | |
Penicillin Streptomycin | Life Technologies | 15140-122 | |
2-Hydroxyethylagarose: Type VII, low gelling temperature | Sigma-Aldrich | 39346-81-1 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados