Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol describing network pharmacology and molecular docking techniques to explore the mechanism of action of Jiawei Shengjiang San (JWSJS) in treating diabetic nephropathy.

Abstract

We aimed to delve into the mechanisms underpinning Jiawei Shengjiang San's (JWSJS) action in treating diabetic nephropathy and deploying network pharmacology. Employing network pharmacology and molecular docking techniques, we predicted the active components and targets of JWSJS and constructed a meticulous "drug-component-target" network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were utilized to discern the therapeutic pathways and targets of JWSJS. Autodock Vina 1.2.0 was deployed for molecular docking verification, and a 100-ns molecular dynamics simulation was conducted to affirm the docking results, followed by in vivo animal verification. The findings revealed that JWSJS shared 227 intersecting targets with diabetic nephropathy, constructing a protein-protein interaction network topology. KEGG enrichment analysis denoted that JWSJS mitigates diabetic nephropathy by modulating lipids and atherosclerosis, the PI3K-Akt signaling pathway, apoptosis, and the HIF-1 signaling pathway, with mitogen-activated protein kinase 1 (MAPK1), MAPK3, epidermal growth factor receptor (EGFR), and serine/threonine-protein kinase 1 (AKT1) identified as collective targets of multiple pathways. Molecular docking asserted that the core components of JWSJS (quercetin, palmitoleic acid, and luteolin) could stabilize conformation with three pivotal targets (MAPK1, MAPK3, and EGFR) through hydrogen bonding. In vivo examinations indicated notable augmentation in body weight and reductions in glycated serum protein (GSP), low-density lipoprotein cholesterol (LDL-C), uridine triphosphate (UTP), and fasting blood glucose (FBG) levels due to JWSJS. Electron microscopy coupled with hematoxylin and eosin (HE) and Periodic acid-Schiff (PAS) staining highlighted the potential of each treatment group in alleviating kidney damage to diverse extents, exhibiting varied declines in p-EGFR, p-MAPK3/1, and BAX, and increments in BCL-2 expression in the kidney tissues of the treated rats. Conclusively, these insights suggest that the protective efficacy of JWSJS on diabetic nephropathy might be associated with suppressing the activation of the EGFR/MAPK3/1 signaling pathway and alleviating renal cell apoptosis.

Introduction

Diabetes mellitus (DM) is a chronic disease that affects multiple systems and can cause various complications due to continuous hyperglycemia, such as diabetic nephropathy (DN), retinopathy, and neuropathy1. DN is a serious complication of DM, accounting for about 30%-50% of end-stage renal disease (ESRD)2. Its clinical manifestation is microalbuminuria, which can progress to ESRD characterized by increased glomerular volume, mesangial stromal hyperplasia, and thickened glomerular basement membrane3. The pathogenesis of DN is complex and has not been fully elucidated. Clinical methods such as lowe....

Protocol

All animals were maintained and used in accordance with the US National Research Council Guide for the Care and Use of Laboratory Animals, 8th Edition, and were reported as recommended in the ARRIVE guidelines16,17. The study was conducted in accordance with the China National Research Council Guide for the Care and Use of Laboratory Animals and was approved by the Animal Ethics Committee of Hebei University of Chinese Medicine (DWLL2019030).

Representative Results

Following the protocol, 90 active ingredients of JWSJS were finally obtained from the analysis after screening and deduplication according to the set standards of OB and DL. These included 20 kinds of Hedysarum Multijugum Maxim, 23 kinds of Epimrdii Herba, 15 kinds of Smilacis Glabrae Rhixoma, 16 kinds of Radix Rhei et Rhizome, four kinds of Curcumaelongae Rhizoma, 15 kinds of Cicadae Periostracum, and six kinds of Bombyx Batryticatus components. Because ther.......

Discussion

Our study employed a combination of network pharmacology, molecular docking, and in vivo animal models. A critical step was the establishment of the "drug-component-target" network, which was crucial for identifying the potential mechanisms of JWSJS in treating DN, focusing particularly on its interaction with the EGFR/MAPK3/1 signaling pathway.

During this study, we made several modifications, particularly in the molecular docking process, to enhance the accuracy of our predi.......

Acknowledgements

This study was supported by the general project of the Natural Science Foundation of Hebei Province, China (No. H2019423037).

....

Materials

NameCompanyCatalog NumberComments
2×SYBR Green qPCR Master Mix Servicebio, Wuhan, ChinaG3320-05
24-h urine protein quantification (UTP)Nanjing Jiancheng Institute of Biological EngineeringN/A
3,3'-DiaminobenzidineShanghai Huzheng Biotech, China91-95-2
Automatic biochemical analysis instrumentHitachi, Japan7170A
Anhydrous EthanolBiosharp, Tianjin, ChinaN/A
BAX Primary antibodies Affinity, USAAF0120Rat
BCL-2 Primary antibodies Affinity, USAAF6139Rat
BX53 microscopeOlympus, JapanBX53
Chloroform SubstituteECOTOP, Guangzhou, ChinaES-8522
Desmond software New York, NY, USARelease 2019-1
Digital Constant Temperature Water BathChangzhou Jintan Liangyou Instrument, ChinaDK-8D
EGFR Primary antibodies Affinity, USAAF6043Rat
Embed-812 RESINShell Chemical, USA14900
Fasting blood glucose (FBG)Nanjing Jiancheng Institute of Biological EngineeringN/A
FC-type full-wavelength enzyme label analyserMultiskan; Thermo, USAN/A
GAPDH  Primary antibodies Affinity, USAAF7021Rat
Glycated serum protein (GSP)Nanjing Jiancheng Institute of Biological EngineeringN/A
Transmission electron microscopeHitachi, JapanH-7650
Haematoxylin/eosin (HE) staining solutionServicebio, USAG1003
Image-Pro PlusMEDIA CYBERNETICS, USAN/A
Real-Time PCR Amplification InstrumentApplied Biosystems, USAiQ5 
Irbesartan tabletsHangzhou Sanofi PharmaceuticalsN/A
IsopropanolBiosharp, Tianjin, ChinaN/A
 JWSJS granulesGuangdong Yifang PharmaceuticalN/A
Kodak Image Station 2000 MM imaging systemKodak, USAIS2000
Low-density cholesterol (LDL-C)Nanjing Jiancheng Institute of Biological EngineeringN/A
MAPK3/1Primary antibodies Affinity, USAAF0155Rat
Medical CentrifugeHunan Xiangyi Laboratory Instrument Development, China TGL-16K
Mini trans-blot transfer systemBio-Rad, USAN/A
Mini-PROTEAN electrophoresis systemBio-Rad, USAN/A
NanoVue Plus SpectrophotometerHealthcare Bio-Sciences AB, Sweden111765
p-EGFR Primary antibodies Affinity, USAAF3044Rat
Periodic acid-Schiff (PAS) staining solutionServicebio, USAG1008
p-MAPK3/1 Primary antibodies Affinity, USAAF1015Rat
Secondary antibodies Santa Cruz, USAsc-2357Rabbit
StreptozotocinSigma, USAS0130
SureScript First-Strand cDNA Synthesis KitGeneCopeia, USAQP056T
TriQuick ReagentSolarbio, Beijing, ChinaR1100
Ultra-Clean WorkbenchSuzhou Purification Equipment, ChinaSW-CJ-1F 

References

  1. Viigimaa, M., Sachinidis, A., Toumpourleka, M., Koutsampasopoulos, K., Alliksoo, S., Titma, T. Macrovascular complications of Type 2 diabetes mellitus. Curr Vasc Pharmacol. 18 (2), 110-116 (2020).
  2. Umanath, K., Lewis, J. B. Update on diabetic ne....

Explore More Articles

MedicineNetwork PharmacologyMolecular DockingEGFR MAPK3 1 Signaling PathwayApoptosisLipid MetabolismPI3K Akt SignalingHIF 1 SignalingQuercetinPalmitoleic AcidLuteolin

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados