Iniciar sesión

Reactor de fase líquida: Inversión de sacarosa

Visión general

Fuente: Kerry M. Dooley y Michael g. Benton, Departamento de ingeniería química, Universidad Estatal de Louisiana, Baton Rouge, LA

Reactores de flujo continuo y por lotes son utilizados en reacciones catalíticas. Camas embaladas, que utilizan catalizadores sólidos y un flujo continuo, son la configuración más común. En la ausencia de una corriente de reciclaje extenso, tales reactores de lecho empacado se modelan generalmente como "plug flow". El otro reactor continuo más común es un tanque agitado, que se supone que se mezcla perfectamente. 1 una de las razones para la prevalencia de reactores de lecho empacado es que, a diferencia de la mayoría de los diseños de tanque agitado, un área de pared grande al cociente del volumen del reactor promueve la transferencia de calor más rápida. Para casi todos los reactores, calor debe añadido o retirado para controlar la temperatura para la reacción deseada.

La cinética de reacciones catalíticas son a menudo más complejos que la simple orden de 1st , 2nd orden, cinética etc. encontrado en los libros de texto. Las tarifas de la reacción también pueden verse afectadas por tarifas de transferencia de masa - reacción no puede ocurrir más rápidamente que la tasa en que reactivos se suministran a la superficie o la tasa a la que se eliminan los productos - y la transferencia de calor. Por estas razones, la experimentación es casi siempre necesaria para determinar la cinética de reacción antes de diseño de equipos a gran escala. En este experimento, exploramos cómo llevar a cabo tales experimentos y cómo interpretar mediante la búsqueda de una expresión de la velocidad de reacción y una constante de velocidad aparente.

Este experimento explora el uso de un reactor de lecho empacado para determinar la cinética de la inversión de la sacarosa. Esta reacción es típica de aquellos caracterizados por un catalizador sólido con productos y reactantes de la fase líquida.

sacarosa → glucosa (dextrosa) + fructose(1)

Un reactor de lecho empacado será operado en diferentes caudales para controlar el espacio tiempo, que se relaciona con tiempo de residencia y es análogo al tiempo transcurrido en un reactor discontinuo. El catalizador, un ácido sólido, primero va ser preparado mediante el intercambio de protones para otros cationes presentes. Entonces, el reactor se calentará a la temperatura deseada (operación isotérmica) con el flujo de reactivos. Cuando se ha equilibrado la temperatura, muestreo de producto comenzará. Las muestras se analizarán por un polarímetro, que mide la rotación óptica. Rotación óptica de la mezcla puede estar relacionada con la conversión de sacarosa, que se puede utilizar entonces en el análisis de la cinética de la estándar para determinar el orden de la reacción, con respecto a la sacarosa reactivo y la constante de velocidad aparente. También analizarán los efectos de la mecánica de fluidos - no axial mezcla (flujo tapón) vs algunos mezcla axial (tanques agitados en serie) - en la cinética.

Procedimiento

Propiedades del catalizador son: tamaño = 20-40 malla; peso = 223 g; contenido de agua = 30 wt. %; densidad aparente (aparente) = 1,01 g/mL; concentración de ácido sitio = 4,6 mmol sitios de ácido/g peso seco; área de superficie = 50 m2/g; macroporosidad (macropore volumen total volumen cat.) = 0,34; macropore tamaño promedio = 80 nm. En la figura 2muestra un diagrama P & ID de la unidad. Para este experimento, se utilizan sólo cama #1, el depósito de materia orgánica

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Resultados

El polarímetro determina las conversiones fraccionarias de sacarosa después de la reacción en un reactor de lecho empacado. Una previa calibración del polarímetro para un tres fuentes diferentes de la sacarosa se muestra en la figura 3.

Figure 3
Figura 3 . Relación entre el grado de...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Aplicación y resumen

La reacción no se comportan exactamente como se esperaba porque el aparente orden n es > 1. De todos los fenómenos que pueden causar tales desviaciones en los reactores reales, desviaciones del comportamiento ideal de PFR por mezcla axial son sugeridas por el hecho de que ajuste para el modelo de tanques en serie da sólo un pequeño número de tanques - para un perfecto PFR, N debe ser al menos 6 . Tales desviaciones se encuentran en las camas relativamente corto, especialmente si el flujo es multifase (el agua se vap...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Referencias
  1. J. Sauer, N. Dahmen and E. Henrich. "Chemical Reactor Types." Ullman's Encycylopedia of Industrial Chemistry (2015). Web. 15 Oct. 2016.
  2. H.S. Fogler, "Elements of Chemical Reaction Engineering," 4th Ed., Prentice-Hall, Upper Saddle River, NJ, 2006, Ch. 2-4; O. Levenspiel, "Chemical Reaction Engineering," 3rd Ed., John Wiley, New York, 1999, Ch. 4-6; C.G. Hill, Jr. and T.W. Root, "Introduction to Chemical Engineering Kinetics and Reactor Design," 2nd Ed., John Wiley, New York, 2014, Ch. 8.
  3. N. Lifshutz and J. S. Dranoff, Ind. Eng. Chem. Proc. Des. Dev., 7, 266-269 (1968).
  4. E.R. Gilliland, H. J. Bixler, and J. E. O'Connell, Ind. Eng. Chem. Fundam., 10, 185-191 (1971).
  5. "Sulfuric Acid." The Essential Chemical Industry. Univ. of York, 2016. http://www.essentialchemicalindustry.org/chemicals/sulfuric-acid.html. Accessed 10/20/16.
  6. E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce and J.G. Goodwin, Jr., Ind. Eng. Chem. Res.,44, 5353-5363 (2005); A. Buasri, N. Chaiyut, V. Loryuenyong, C. Rodklum, T. Chaikwan, and N. Kumphan, Appl. Sci.2, 641-653 (2012); doi:10.3390/app2030641.
Tags
Valor vac otema

Saltar a...

0:07

Overview

1:04

Principles of Reaction Kinetics in Packed Bed Reactors

3:26

Packed Bed Reactor Start-up

4:21

Catalyst Regeneration and Sucrose Feed

5:27

Sample Collection and Polarimeter Analysis

7:07

Results

9:29

Applications

10:37

Summary

Vídeos de esta colección:

article

Now Playing

Reactor de fase líquida: Inversión de sacarosa

Chemical Engineering

9.6K Vistas

article

Prueba de la eficiencia de transferencia de calor de un intercambiador de calor de tubos con aletas

Chemical Engineering

17.8K Vistas

article

Uso de una bandeja de secado para investigar la transferencia de calor convectiva y conductiva

Chemical Engineering

43.8K Vistas

article

Viscosidad de las soluciones de propilenglicol

Chemical Engineering

32.2K Vistas

article

Porosimetría de un polvo de alúmina de sílice

Chemical Engineering

9.6K Vistas

article

Demostración del modelo de ley de energía a través de extrusión

Chemical Engineering

9.9K Vistas

article

Amortiguador de gas

Chemical Engineering

36.4K Vistas

article

Equilibrio vapor-líquido

Chemical Engineering

87.7K Vistas

article

El efecto de la relación de reflujo en la eficiencia de destilación de bandeja

Chemical Engineering

77.3K Vistas

article

Eficiencia de la extracción líquido-líquido

Chemical Engineering

48.2K Vistas

article

Cristalización del ácido salicílico mediante modificación química

Chemical Engineering

24.0K Vistas

article

Flujo monofásico y bifásico en un reactor de lecho compacto

Chemical Engineering

18.8K Vistas

article

Cinética de la polimerización por adición de polidimetilsiloxano

Chemical Engineering

16.0K Vistas

article

Reactor catalítico: Hidrogenación de etileno

Chemical Engineering

29.9K Vistas

article

Spin y Chill

Chemical Engineering

7.3K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados