Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Ce protocole décrit l’extraction et la visualisation de protéines agrégées et solubles d’Escherichia coli après traitement avec un antimicrobien protéotoxique. Suivre cette procédure permet une comparaison qualitative de la formation d’agrégats protéiques in vivo dans différentes souches bactériennes et/ou entre les traitements.

Résumé

L’exposition des organismes vivants à des stress environnementaux et cellulaires provoque souvent des perturbations dans l’homéostasie des protéines et peut entraîner une agrégation des protéines. L’accumulation d’agrégats de protéines dans les cellules bactériennes peut entraîner des altérations significatives du comportement phénotypique cellulaire, notamment une réduction des taux de croissance, de la résistance au stress et de la virulence. Plusieurs procédures expérimentales existent pour l’examen de ces phénotypes médiés par les facteurs de stress. Cet article décrit un essai optimisé pour l’extraction et la visualisation de protéines agrégées et solubles de différentes souches d’Escherichia coli après traitement avec un antimicrobien contenant de l’argent-ruthénium. Ce composé est connu pour générer des espèces réactives de l’oxygène et provoque une agrégation protéique généralisée.

La méthode combine une séparation basée sur la centrifugation des agrégats de protéines et des protéines solubles des cellules traitées et non traitées avec une séparation et une visualisation ultérieures par électrophorèse sur gel de dodécylsulfate de sodium-polyacrylamide (SDS-PAGE) et coloration de Coomassie. Cette approche est simple, rapide et permet une comparaison qualitative de la formation d’agrégats protéiques dans différentes souches d’E. coli. La méthodologie a un large éventail d’applications, y compris la possibilité d’étudier l’impact d’autres antimicrobiens protéotoxiques sur l’agrégation in vivo des protéines dans un large éventail de bactéries. De plus, le protocole peut être utilisé pour identifier les gènes qui contribuent à une résistance accrue aux substances protéotoxiques. Les bandes de gel peuvent être utilisées pour l’identification ultérieure des protéines particulièrement sujettes à l’agrégation.

Introduction

Les bactéries sont inévitablement exposées à une myriade de stress environnementaux, y compris un faible pH (par exemple, dans l’estomac des mammifères)1,2, des espèces réactives de l’oxygène et du chlore (ROS / RCS) (par exemple, lors d’une explosion oxydative dans les phagocytes)3,4,5, des températures élevées (par exemple, dans les sources chaudes ou pendant un choc thermique)6,7, et plusieurs antimicrobiens puissants (par exemple, AGXX utilisé dans ce prot....

Protocole

1. Traitement du stress des souches d’E. coli MG1655 et CFT073

  1. Inoculer 5 mL de bouillon de lysogénie (LB) avec une seule colonie de souche commensale d’E. coli MG1655 et de souche uropathogène E. coli (UPEC) CFT073, respectivement, et incuber pendant 14 à 16 h (pendant la nuit) à 37 °C et 300 tr/min.
    REMARQUE: Escherichia coli CFT073 est un agent pathogène humain. La manipulation du CFT073 doit être effectuée avec des mesures de biosécurité appropriées dans un laboratoire certifié de niveau de biosécurité 2.
  2. Diluer chaque souche dans une fiole de 500 mL contenant70 mL de 3-(N-morpholino)acide propane....

Résultats

figure-results-58
Figure 6: Résultats représentatifs de l’agrégation protéique induite par les antimicrobiens dans la souche commensale Mg1655 d’Escherichia coli et la souche CFT073 de l’UPEC. Les souches d’E. coli MG1655 et CFT073 ont été cultivées à 37 °C et de 300 tr/min àOD 600= 0,5-0,55 dans un milieu MOPS-g avant d’être t.......

Discussion

Ce protocole décrit une méthodologie optimisée pour l’analyse de la formation d’agrégats protéiques après traitement de différentes souches d’E. coli avec un antimicrobien protéotoxique. Le protocole permet l’extraction simultanée de fractions protéiques insolubles et solubles à partir de cellules E. coli traitées et non traitées. Par rapport aux protocoles existants pour l’isolement des agrégats de protéines à partir des cellules14,

Déclarations de divulgation

Les auteurs n’ont rien à divulguer.

Remerciements

Ce travail a été soutenu par les fonds de démarrage de l’Illinois State University School of Biological Sciences, l’Illinois State University New Faculty Initiative Grant et la subvention NIAID R15AI164585 (à J.-U. D.). G.M.A. a été soutenu par l’Illinois State University Undergraduate Research Support Program (à G.M.A.). K. P. H. a été soutenu par une bourse RISE fournie par le Service allemand d’échanges universitaires (DAAD). Les auteurs remercient le Dr Uwe Landau et le Dr Carsten Meyer de Largentech Vertriebs GmbH pour avoir fourni la poudre AGXX. Les figures 1, Figure 2, Figure 3, Figure 4et

matériels

NameCompanyCatalog NumberComments
Chemicals/Reagents
AcetoneFisher Scientific67-64-1
30% Acrylamide/Bisacrylamide solution 29:1Bio-Rad1610156
Ammonium persulfateMillipore SigmaA3678-100G
Benzonase nucleaseSigmaE1014-5KU
Bluestain 2 Protein ladder, 5-245 kDaGoldBioP008-500
β-mercaptoethanolMillipore SigmaM6250-100ML
Bromophenol blueGoldBioB-092-25
Coomassie Brilliant Blue R-250MP Biomedicals LLC821616
D-GlucoseMillipore SigmaG8270-1KG
D-SucroseAcros Organics57-50-1
Ethylenediamine tetra acetic acid (EDTA)Sigma-AldrichSLBT9686
Glacial Acetic acidMillipore SigmaARK2183-1L
Glycerol, 99%Sigma-AldrichG5516-1L
GlycineGoldBioG-630-1
Hydrochloric acid, ACS reagentSigma-Aldrich320331-2.5L
Isopropanol (2-Propanol)Sigma402893-2.5L
LB broth (Miller)Millipore SigmaL3522-1KG
LB broth with agar (Miller)Millipore SigmaL2897-1KG
LysozymeGoldBioL-040-25
10x MOPS BufferTeknovaM2101
Nonidet P-40Thomas Scientific9036-19-5
Potassium phosphate, dibasicSigma-AldrichP3786-1KG
Potassium phosphate, monobasicAcros Organics7778-77-0
Sodium dodecyl sulfate (SDS)Sigma-AldrichL3771-500G
Tetramethylethylenediamine (TEMED)Millipore SigmaT9281-50ML
ThiamineSigma-AldrichT4625-100G
100% Trichloroacetic acidMillipore SigmaT6399-100G
Tris baseGoldBioT-400-1
Material/Equipment
Centrifuge tubes (15 mL)Alkali ScientificJABG-1019
Erlenmeyer flask (125 mL)Carolina726686
Erlenmeyer flask (500 mL)Carolina726694
Freezer: -80 °CFisher Scientific
Glass beads (0.5 mm)BioSpec Products1107-9105
MicrocentrifugeHermleZ216MK
Microcentriguge tubes (1.7 mL)VWR International87003-294
Microcentriguge tubes (2.0 mL)Axygen Maxiclear MicrotubesMCT-200-C
Plastic cuvettesFischer Scientific14-377-012
Power supplyThermoFisher ScientificEC105
RockerAlkali ScientificRS7235
Shaking incubator (37 °C)Benchmark Scientific
Small glass plateBio-Rad1653311
Spacer plates (1 mm)Bio-Rad1653308
SpectrophotometerThermoscientific3339053
Tabletop centrifuge for 15 mL centrifuge tubesBeckman-Coulter
Vertical gel electrophoresis chamberBio-Rad1658004
VortexerFisher Vortex Genie 212-812
ThermomixerBenchmark ScientificH5000-HC
10 well combBio-Rad1653359

Références

  1. Dahl, J. -. U., et al. HdeB functions as an acid-protective chaperone in bacteria. Journal of Biological Chemistry. 290 (1), 65-75 (2015).
  2. Foit, L., George, J. S., Zhang, B. W., Brooks, C. L., Bardwell, J. C. A. Chaperone activation by unfolding.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

BiochimieNum ro 172R ponse au stressagr gation des prot inesd ploiement des prot inesbact riescontr le de la qualit des prot inesstress oxydatifantimicrobiensprot ostasie

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.