Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Ce protocole décrit l’extraction et la visualisation de protéines agrégées et solubles d’Escherichia coli après traitement avec un antimicrobien protéotoxique. Suivre cette procédure permet une comparaison qualitative de la formation d’agrégats protéiques in vivo dans différentes souches bactériennes et/ou entre les traitements.
L’exposition des organismes vivants à des stress environnementaux et cellulaires provoque souvent des perturbations dans l’homéostasie des protéines et peut entraîner une agrégation des protéines. L’accumulation d’agrégats de protéines dans les cellules bactériennes peut entraîner des altérations significatives du comportement phénotypique cellulaire, notamment une réduction des taux de croissance, de la résistance au stress et de la virulence. Plusieurs procédures expérimentales existent pour l’examen de ces phénotypes médiés par les facteurs de stress. Cet article décrit un essai optimisé pour l’extraction et la visualisation de protéines agrégées et solubles de différentes souches d’Escherichia coli après traitement avec un antimicrobien contenant de l’argent-ruthénium. Ce composé est connu pour générer des espèces réactives de l’oxygène et provoque une agrégation protéique généralisée.
La méthode combine une séparation basée sur la centrifugation des agrégats de protéines et des protéines solubles des cellules traitées et non traitées avec une séparation et une visualisation ultérieures par électrophorèse sur gel de dodécylsulfate de sodium-polyacrylamide (SDS-PAGE) et coloration de Coomassie. Cette approche est simple, rapide et permet une comparaison qualitative de la formation d’agrégats protéiques dans différentes souches d’E. coli. La méthodologie a un large éventail d’applications, y compris la possibilité d’étudier l’impact d’autres antimicrobiens protéotoxiques sur l’agrégation in vivo des protéines dans un large éventail de bactéries. De plus, le protocole peut être utilisé pour identifier les gènes qui contribuent à une résistance accrue aux substances protéotoxiques. Les bandes de gel peuvent être utilisées pour l’identification ultérieure des protéines particulièrement sujettes à l’agrégation.
Les bactéries sont inévitablement exposées à une myriade de stress environnementaux, y compris un faible pH (par exemple, dans l’estomac des mammifères)1,2, des espèces réactives de l’oxygène et du chlore (ROS / RCS) (par exemple, lors d’une explosion oxydative dans les phagocytes)3,4,5, des températures élevées (par exemple, dans les sources chaudes ou pendant un choc thermique)6,7, et plusieurs antimicrobiens puissants (par exemple, AGXX utilisé dans ce prot....
1. Traitement du stress des souches d’E. coli MG1655 et CFT073
Figure 6: Résultats représentatifs de l’agrégation protéique induite par les antimicrobiens dans la souche commensale Mg1655 d’Escherichia coli et la souche CFT073 de l’UPEC. Les souches d’E. coli MG1655 et CFT073 ont été cultivées à 37 °C et de 300 tr/min àOD 600= 0,5-0,55 dans un milieu MOPS-g avant d’être t.......
Ce protocole décrit une méthodologie optimisée pour l’analyse de la formation d’agrégats protéiques après traitement de différentes souches d’E. coli avec un antimicrobien protéotoxique. Le protocole permet l’extraction simultanée de fractions protéiques insolubles et solubles à partir de cellules E. coli traitées et non traitées. Par rapport aux protocoles existants pour l’isolement des agrégats de protéines à partir des cellules14,
Les auteurs n’ont rien à divulguer.
Ce travail a été soutenu par les fonds de démarrage de l’Illinois State University School of Biological Sciences, l’Illinois State University New Faculty Initiative Grant et la subvention NIAID R15AI164585 (à J.-U. D.). G.M.A. a été soutenu par l’Illinois State University Undergraduate Research Support Program (à G.M.A.). K. P. H. a été soutenu par une bourse RISE fournie par le Service allemand d’échanges universitaires (DAAD). Les auteurs remercient le Dr Uwe Landau et le Dr Carsten Meyer de Largentech Vertriebs GmbH pour avoir fourni la poudre AGXX. Les figures 1, Figure 2, Figure 3, Figure 4et
Name | Company | Catalog Number | Comments |
Chemicals/Reagents | |||
Acetone | Fisher Scientific | 67-64-1 | |
30% Acrylamide/Bisacrylamide solution 29:1 | Bio-Rad | 1610156 | |
Ammonium persulfate | Millipore Sigma | A3678-100G | |
Benzonase nuclease | Sigma | E1014-5KU | |
Bluestain 2 Protein ladder, 5-245 kDa | GoldBio | P008-500 | |
β-mercaptoethanol | Millipore Sigma | M6250-100ML | |
Bromophenol blue | GoldBio | B-092-25 | |
Coomassie Brilliant Blue R-250 | MP Biomedicals LLC | 821616 | |
D-Glucose | Millipore Sigma | G8270-1KG | |
D-Sucrose | Acros Organics | 57-50-1 | |
Ethylenediamine tetra acetic acid (EDTA) | Sigma-Aldrich | SLBT9686 | |
Glacial Acetic acid | Millipore Sigma | ARK2183-1L | |
Glycerol, 99% | Sigma-Aldrich | G5516-1L | |
Glycine | GoldBio | G-630-1 | |
Hydrochloric acid, ACS reagent | Sigma-Aldrich | 320331-2.5L | |
Isopropanol (2-Propanol) | Sigma | 402893-2.5L | |
LB broth (Miller) | Millipore Sigma | L3522-1KG | |
LB broth with agar (Miller) | Millipore Sigma | L2897-1KG | |
Lysozyme | GoldBio | L-040-25 | |
10x MOPS Buffer | Teknova | M2101 | |
Nonidet P-40 | Thomas Scientific | 9036-19-5 | |
Potassium phosphate, dibasic | Sigma-Aldrich | P3786-1KG | |
Potassium phosphate, monobasic | Acros Organics | 7778-77-0 | |
Sodium dodecyl sulfate (SDS) | Sigma-Aldrich | L3771-500G | |
Tetramethylethylenediamine (TEMED) | Millipore Sigma | T9281-50ML | |
Thiamine | Sigma-Aldrich | T4625-100G | |
100% Trichloroacetic acid | Millipore Sigma | T6399-100G | |
Tris base | GoldBio | T-400-1 | |
Material/Equipment | |||
Centrifuge tubes (15 mL) | Alkali Scientific | JABG-1019 | |
Erlenmeyer flask (125 mL) | Carolina | 726686 | |
Erlenmeyer flask (500 mL) | Carolina | 726694 | |
Freezer: -80 °C | Fisher Scientific | ||
Glass beads (0.5 mm) | BioSpec Products | 1107-9105 | |
Microcentrifuge | Hermle | Z216MK | |
Microcentriguge tubes (1.7 mL) | VWR International | 87003-294 | |
Microcentriguge tubes (2.0 mL) | Axygen Maxiclear Microtubes | MCT-200-C | |
Plastic cuvettes | Fischer Scientific | 14-377-012 | |
Power supply | ThermoFisher Scientific | EC105 | |
Rocker | Alkali Scientific | RS7235 | |
Shaking incubator (37 °C) | Benchmark Scientific | ||
Small glass plate | Bio-Rad | 1653311 | |
Spacer plates (1 mm) | Bio-Rad | 1653308 | |
Spectrophotometer | Thermoscientific | 3339053 | |
Tabletop centrifuge for 15 mL centrifuge tubes | Beckman-Coulter | ||
Vertical gel electrophoresis chamber | Bio-Rad | 1658004 | |
Vortexer | Fisher Vortex Genie 2 | 12-812 | |
Thermomixer | Benchmark Scientific | H5000-HC | |
10 well comb | Bio-Rad | 1653359 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon