È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
Questo protocollo descrive l'estrazione e la visualizzazione di proteine aggregate e solubili da Escherichia coli dopo il trattamento con un antimicrobico proteotossico. Seguire questa procedura permette un confronto qualitativo della formazione di aggregati proteici in vivo in diversi ceppi batterici e/o tra trattamenti.
L'esposizione degli organismi viventi a stress ambientali e cellulari spesso causa interruzioni nell'omeostasi proteica e può provocare l'aggregazione proteica. L'accumulo di aggregati proteici nelle cellule batteriche può portare ad alterazioni significative nel comportamento fenotipico cellulare, tra cui una riduzione dei tassi di crescita, resistenza allo stress e virulenza. Esistono diverse procedure sperimentali per l'esame di questi fenotipi mediati da fattori di stress. Questo documento descrive un test ottimizzato per l'estrazione e la visualizzazione di proteine aggregate e solubili da diversi ceppi di Escherichia coli dopo il trattamento con un antimicrobico contenente argento-rutenio. Questo composto è noto per generare specie reattive dell'ossigeno e provoca un'aggregazione proteica diffusa.
Il metodo combina una separazione basata sulla centrifugazione di aggregati proteici e proteine solubili da cellule trattate e non trattate con successiva separazione e visualizzazione mediante elettroforesi su gel di dodecilsalfato-poliacrilammide (SDS-PAGE) e colorazione di Coomassie. Questo approccio è semplice, veloce e consente un confronto qualitativo della formazione di aggregati proteici in diversi ceppi di E. coli. La metodologia ha una vasta gamma di applicazioni, tra cui la possibilità di studiare l'impatto di altri antimicrobici proteotossici sull'aggregazione proteica in vivo in una vasta gamma di batteri. Inoltre, il protocollo può essere utilizzato per identificare i geni che contribuiscono ad aumentare la resistenza alle sostanze proteossiche. Le bande di gel possono essere utilizzate per la successiva identificazione di proteine particolarmente inclini all'aggregazione.
I batteri sono inevitabilmente esposti a una miriade di stress ambientali, tra cui pH basso (ad esempio, nello stomaco dei mammiferi)1,2,specie reattive dell'ossigeno e del cloro (ROS / RCS) (ad esempio, durante lo scoppio ossidativo nei fagociti)3,4,5, temperature elevate (ad esempio, nelle sorgenti calde o durante lo shock termico)6,7e diversi potenti antimicrobici (ad esempio, AGXX utilizzato in questo protocollo)8. Le proteine sono particolarmente vulnerabili a uno qualsiasi di questi fattori di stress e l'esposizione può provocare un-/misfolding proteico che poi semina l'aggregazione. Tutti gli organismi impiegano sistemi protettivi che consentono loro di far fronte al misfolding proteico9. Tuttavia, uno stress grave può sopraffare il meccanismo di controllo della qualità delle proteine e interrompere la struttura secondaria e / o terziaria delle proteine, che alla fine inattiva le proteine. Di conseguenza, gli aggregati proteici possono compromettere gravemente le funzioni cellulari critiche necessarie per la crescita e la sopravvivenza batterica, la resistenza allo stress e la virulenza10. Pertanto, la ricerca incentrata sull'aggregazione proteica e le sue conseguenze nei batteri è un argomento rilevante a causa del suo potenziale impatto sul controllo delle malattie infettive.
Lo sviluppo e l'aggregazione delle proteine indotte dal calore sono spesso reversibili7. Al contrario, altri stress proteotossici, come lo stress ossidativo, possono causare modificazioni proteiche irreversibili attraverso l'ossidazione di specifiche catene laterali di aminoacidi con conseguente un-/misfolding proteico e, infine, aggregazione proteica4. La formazione indotta da stress di aggregati proteici insolubili è stata ampiamente studiata nel contesto degli chaperoni molecolari e delle loro funzioni protettive in lieviti e batteri11,12,13. Sono stati pubblicati diversi protocolli che utilizzano una varietà di tecniche biochimiche per l'isolamento e l'analisi di aggregati proteici insolubili14,15,16,17. I protocolli esistenti sono stati utilizzati principalmente per studiare l'aggregazione proteica batterica in caso di shock termico e/o identificazione di chaperoni molecolari. Mentre questi protocolli sono stati certamente un progresso nel campo, ci sono alcuni importanti inconvenienti nelle procedure sperimentali perché richiedono (i) un grande volume di coltura batterica fino a 10 L14,17, (ii) complicati processi di interruzione fisica, incluso l'uso di disgregatori cellulari, stampa francese e / o sonicazione14,15,17o (iii) lunghi processi ripetuti fasi di lavaggio e incubazione15,16,17.
Questo documento descrive un protocollo modificato che mira ad affrontare i limiti degli approcci precedenti e consente l'analisi della quantità di aggregati proteici formati in due diversi ceppi di Escherichia coli dopo il trattamento con un rivestimento superficiale antimicrobico proteotossico. Il rivestimento è composto da metallo-argento (Ag) e rutenio (Ru)-condizionati con acido ascorbico, e la sua attività antimicrobica è ottenuta dalla generazione di specie reattive dell'ossigeno8,18. Di seguito è riportata una descrizione dettagliata della preparazione della coltura batterica dopo il trattamento con il composto antimicrobico e un confronto dello stato di aggregazione proteica in caso di esposizione di due ceppi di E. coli con distinti profili di suscettibilità all'aumento della concentrazione dell'antimicrobico. Il metodo descritto è economico, veloce e riproducibile e può essere utilizzato per studiare l'aggregazione proteica in presenza di altri composti proteotossici. Inoltre, il protocollo può essere modificato per analizzare l'impatto che specifiche delezioni geniche hanno sull'aggregazione proteica in una varietà di batteri diversi.
1. Trattamento da stress dei ceppi di E. coli MG1655 e CFT073
Figura 1: Trattamento da stress da Escherichia coli. Le colture batteriche vengono coltivate in MOPS-g e trattate con le concentrazioni indicate dell'antimicrobico contenente argento-rutenio quando viene raggiunta la fase mid-log. Abbreviazioni: LB = brodo di lipogenesi; Ag-Ru = argento-rutenio; MOPS-g = acido3-( N-morfolino)propanisolfonico (MOPS)-glucosio. Fare clic qui per visualizzare una versione più grande di questa figura.
2. Raccolta di campioni di cellule batteriche
Figura 2: Raccolta di campioni batterici. I campioni di cellule vengono raccolti mediante centrifugazione e risuscisi in tampone di lisi seguito da stoccaggio a -80 °C. Fare clic qui per visualizzare una versione più grande di questa figura.
3. Estrazione degli aggregati proteici insolubili
Figura 3: Estrazione di aggregati proteici insolubili. L'estrazione di aggregati proteici comporta una serie di passaggi tra cui la distruzione cellulare, la separazione degli aggregati proteici dalle proteine solubili, la solubilizzazione delle proteine di membrana e il lavaggio. Abbreviazione: SDS = sodio dodecil solfato. Fare clic qui per visualizzare una versione più grande di questa figura.
4. Preparazione del campione proteico solubile
Figura 4: Preparazione di proteine solubili. La preparazione della proteina solubile comporta una fase di precipitazione con acido tricloroacetico e lavaggio ripetuto con acetone ghiacciato. Abbreviazioni: TCA = acido tricloroacetico; SDS = sodio dodecil solfato. Fare clic qui per visualizzare una versione più grande di questa figura.
5. Separazione e visualizzazione di aggregati proteici estratti utilizzando SDS-PAGE
Figura 5: Separazione e visualizzazione delle proteine. I campioni sono separati da SDS-PAGE e visualizzati dalla colorazione Coomassie. Abbreviazione: SDS-PAGE = elettroforesi su gel di sodio dodecilsolfato-poliacrilammide. Fare clic qui per visualizzare una versione più grande di questa figura.
Figura 6: Risultati rappresentativi dell'aggregazione proteica indotta da antimicrobici in Escherichia coli commensale ceppo MG1655 e UPEC ceppo CFT073. I ceppi di E. coli MG1655 e CFT073 sono stati coltivati a 37 °C e 300 rpm a OD600= 0,5-0,55 in mezzi MOPS-g prima di essere trattati con le concentrazioni indicate (-, 0 mg/mL; +...
Questo protocollo descrive una metodologia ottimizzata per l'analisi della formazione di aggregati proteici dopo il trattamento di diversi ceppi di E. coli con un antimicrobico proteotossico. Il protocollo consente l'estrazione simultanea di frazioni proteiche insolubili e solubili da cellule di E. coli trattate e non trattate. Rispetto ai protocolli esistenti per l'isolamento di aggregati proteici dalle cellule14,15,
Gli autori non hanno nulla da rivelare.
Questo lavoro è stato supportato dai fondi di avvio della Illinois State University School of Biological Sciences, dall'Illinois State University New Faculty Initiative Grant e dalla sovvenzione NIAID R15AI164585 (a J.-U. D.). G.M.A. è stato supportato dall'Illinois State University Undergraduate Research Support Program (a G.M.A.). K. P. H. è stato supportato da una borsa di studio RISE fornita dal German Academic Exchange Service (DAAD). Gli autori ringraziano il Dr. Uwe Landau e il Dr. Carsten Meyer di Largentech Vertriebs GmbH per aver fornito la polvere AGXX. Le figure 1, figura 2, figura 3, figura 4e figura 5 sono state generate con Biorender.
Name | Company | Catalog Number | Comments |
Chemicals/Reagents | |||
Acetone | Fisher Scientific | 67-64-1 | |
30% Acrylamide/Bisacrylamide solution 29:1 | Bio-Rad | 1610156 | |
Ammonium persulfate | Millipore Sigma | A3678-100G | |
Benzonase nuclease | Sigma | E1014-5KU | |
Bluestain 2 Protein ladder, 5-245 kDa | GoldBio | P008-500 | |
β-mercaptoethanol | Millipore Sigma | M6250-100ML | |
Bromophenol blue | GoldBio | B-092-25 | |
Coomassie Brilliant Blue R-250 | MP Biomedicals LLC | 821616 | |
D-Glucose | Millipore Sigma | G8270-1KG | |
D-Sucrose | Acros Organics | 57-50-1 | |
Ethylenediamine tetra acetic acid (EDTA) | Sigma-Aldrich | SLBT9686 | |
Glacial Acetic acid | Millipore Sigma | ARK2183-1L | |
Glycerol, 99% | Sigma-Aldrich | G5516-1L | |
Glycine | GoldBio | G-630-1 | |
Hydrochloric acid, ACS reagent | Sigma-Aldrich | 320331-2.5L | |
Isopropanol (2-Propanol) | Sigma | 402893-2.5L | |
LB broth (Miller) | Millipore Sigma | L3522-1KG | |
LB broth with agar (Miller) | Millipore Sigma | L2897-1KG | |
Lysozyme | GoldBio | L-040-25 | |
10x MOPS Buffer | Teknova | M2101 | |
Nonidet P-40 | Thomas Scientific | 9036-19-5 | |
Potassium phosphate, dibasic | Sigma-Aldrich | P3786-1KG | |
Potassium phosphate, monobasic | Acros Organics | 7778-77-0 | |
Sodium dodecyl sulfate (SDS) | Sigma-Aldrich | L3771-500G | |
Tetramethylethylenediamine (TEMED) | Millipore Sigma | T9281-50ML | |
Thiamine | Sigma-Aldrich | T4625-100G | |
100% Trichloroacetic acid | Millipore Sigma | T6399-100G | |
Tris base | GoldBio | T-400-1 | |
Material/Equipment | |||
Centrifuge tubes (15 mL) | Alkali Scientific | JABG-1019 | |
Erlenmeyer flask (125 mL) | Carolina | 726686 | |
Erlenmeyer flask (500 mL) | Carolina | 726694 | |
Freezer: -80 °C | Fisher Scientific | ||
Glass beads (0.5 mm) | BioSpec Products | 1107-9105 | |
Microcentrifuge | Hermle | Z216MK | |
Microcentriguge tubes (1.7 mL) | VWR International | 87003-294 | |
Microcentriguge tubes (2.0 mL) | Axygen Maxiclear Microtubes | MCT-200-C | |
Plastic cuvettes | Fischer Scientific | 14-377-012 | |
Power supply | ThermoFisher Scientific | EC105 | |
Rocker | Alkali Scientific | RS7235 | |
Shaking incubator (37 °C) | Benchmark Scientific | ||
Small glass plate | Bio-Rad | 1653311 | |
Spacer plates (1 mm) | Bio-Rad | 1653308 | |
Spectrophotometer | Thermoscientific | 3339053 | |
Tabletop centrifuge for 15 mL centrifuge tubes | Beckman-Coulter | ||
Vertical gel electrophoresis chamber | Bio-Rad | 1658004 | |
Vortexer | Fisher Vortex Genie 2 | 12-812 | |
Thermomixer | Benchmark Scientific | H5000-HC | |
10 well comb | Bio-Rad | 1653359 |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon