Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Une étape nécessaire dans le développement d’aptamères anticancéreux est de tester sa liaison à la cible. Nous démontrons un test basé sur la cytométrie en flux pour étudier cette liaison, en soulignant l’importance d’inclure un aptamère témoin négatif et des cellules cancéreuses positives ou négatives pour cette protéine particulière.
Un défi clé dans le développement d’un aptamère anticancéreux est de déterminer efficacement la sélectivité et la spécificité de l’aptamère développé par rapport à la protéine cible. En raison de ses nombreux avantages par rapport aux anticorps monoclonaux, le développement d’aptamères a acquis une énorme popularité parmi les chercheurs sur le cancer. L’évolution systématique des ligands par enrichissement exponentiel (SELEX) est la méthode la plus courante de développement d’aptamères spécifiques aux protéines d’intérêt. Suite à SELEX, un test de liaison rapide et efficace accélère le processus d’identification, confirmant la sélectivité et la spécificité de l’aptamère.
Cet article explique un test de liaison étape par étape basé sur la cytométrie en flux d’un aptamère spécifique de la molécule d’adhésion cellulaire épithéliale (EpCAM). La glycoprotéine transmembranaire EpCAM est surexprimée dans la plupart des carcinomes et joue un rôle dans l’initiation, la progression et les métastases du cancer. Par conséquent, c’est un candidat précieux pour l’administration ciblée de médicaments aux tumeurs. Pour évaluer la sélectivité et la spécificité de l’aptamère à l’EpCAM lié à la membrane, des cellules EpCAM positives et négatives sont nécessaires. En outre, un aptamère EpCAM non contraignant avec une longueur et une structure 2 dimensions (2D) similaires à l’aptamère de liaison EpCAM est requis. Le test de liaison comprend différents tampons (tampon de blocage, tampon de lavage, tampon d’incubation et tampon FACS) et étapes d’incubation.
L’aptamère est incubé avec les lignées cellulaires. Après les étapes d’incubation et de lavage, les cellules seront évaluées à l’aide d’un test de cytométrie en flux sensible. L’analyse des résultats montre la liaison de l’aptamère spécifique à EpCAM aux cellules EpCAM positives et non aux cellules EpCAM négatives. Dans les cellules EpCAM positives, cela est représenté comme un décalage de bande dans la liaison de l’aptamère EpCAM vers la droite par rapport au contrôle de l’aptamère non liant. Dans les cellules EpCAM négatives, les bandes correspondantes d’aptamères liant et non liant EpCAM se chevauchent. Cela démontre la sélectivité et la spécificité de l’aptamère EpCAM. Bien que ce protocole soit axé sur l’aptamère EpCAM, il est applicable à d’autres aptamères publiés.
Le cancer reste l’une des principales causes de mortalité dans le monde1. Malgré l’amélioration significative du traitement du cancer au cours des dernières décennies, le développement de médicaments anticancéreux est toujours un sujet très débattu. En effet, la chimiothérapie, en tant que pilier du traitement du cancer, s’accompagne d’effets secondaires graves qui limitent l’observance du traitement par le patient. De plus, la résistance du cancer induite par la chimiothérapie au traitement a limité son application en tant que seul choix d’intervention médicale. L’application d’anticorps monoclonaux (mAbs) a introduit une réponse accrue aux traitements contre le cancer2. La raison d’être de l’utilisation des AcM était d’améliorer l’efficacité des agents chimiothérapeutiques et de minimiser leurs effets indésirables. Cependant, l’administration des AcM est également devenue un défi. Cela n’était pas seulement dû aux réactions immunologiques induites par AcM, mais aussi aux coûts de production élevés et dépendants des animaux et aux conditions de stockagedifficiles 3. L’introduction des aptamères dans les années 19904 a suscité de nouveaux espoirs dans le traitement du cancer, car l’application des aptamères pourrait relever les défis associés aux mAbs.
Les aptamères sont de courtes séquences d’acides nucléiques qui sont spécifiquement produites pour une certaine cible. L’évolution systématique des ligands par enrichissement exponentiel (SELEX) est une méthode courante dans la production d’aptamères. Dans SELEX, la protéine d’intérêt est incubée avec une bibliothèque de séquences nucléotidiques aléatoires, et à travers une série de cycles itératifs, l’aptamère spécifique à cette protéine est purifié. Les aptamères ont une sélectivité et une spécificité de cible similaires à celles des mAb, et par conséquent, le développement de médicaments dans ce domaine montre des applications futures prometteuses. Les aptamères spécifiques aux biomarqueurs du cancer pourraient être appliqués comme médicaments uniques et outils de diagnostic du cancer 5,6,7. En raison de leur structure nanométrique, ces aptamères pourraient également agir comme porteurs de médicaments pour délivrer des agents cytotoxiques spécifiquement à la tumeur8. Cela augmenterait l’efficacité de l’administration ciblée de médicaments et diminuerait les effets indésirables non ciblés associés à la chimiothérapie. De plus, ces nanomédicaments ont une pénétration tissulaire élevée, ce qui en fait un candidat souhaitable pour l’administration et le traitement de médicaments contre les tumeurs profondes. Les aptamères peuvent également être conçus pour cibler les transporteurs exprimés sur la barrière hémato-encéphalique (BHE) afin d’améliorer l’administration de médicaments aux tumeurs cérébrales9. Un bon exemple d’un tel aptamère sont les aptamères bifonctionnels, ciblant le récepteur de la transferrine (TfR)10 pour améliorer l’administration de médicaments à travers la BHE, et délivrant une charge utile de médicament cytotoxique aux cellules tumorales11.
Malgré tous les avantages des aptamères, le développement de médicaments dans ce domaine n’a pas encore produit de médicament anticancéreux commercialisé et efficace. L’une des raisons pourrait être le manque de méthodes standard et reproductibles qui pourraient être suivies à l’échelle mondiale par les chercheurs dans le domaine. Dans cet article, un protocole étape par étape d’un aptamère se liant à une protéine native exprimée à la surface de la cellule est démontré. Ce protocole est une étape préalable à l’évaluation préclinique des aptamères anticancéreux. Le test est effectué pour montrer la sélectivité et la spécificité de l’aptamère purifié recueilli à partir de SELEX ou d’une séquence d’aptamères publiée pour confirmer la sélectivité et la spécificité. Ce test basé sur la cytométrie en flux est un test rapide, fiable et sensible qui montre avec précision la sélectivité et la spécificité de l’aptamère, où l’aptamère est testé contre les protéines à la surface de la cellule12,13,14. Cette méthode est démontrée à l’aide de la liaison d’un aptamère spécifique à l’EpCAM illustrée dans cet article15. EpCAM, en tant que glycoprotéine transmembranaire, joue un rôle dans la signalisation, la progression, la migration et les métastases des cellules tumorales16,17. Pour montrer la sélectivité et la spécificité de cet aptamère, des cellules cancéreuses EpCAM positives et négatives ont été utilisées. L’aptamère spécifique à l’EpCAM développé précédemment, TEPP (5′-GC GCG GTAC CGC GC TA ACG GA GGTTGCG TCC GT-3′), et un aptamère témoin négatif, TENN (5′-GC GCG TGCA CGC GC TA ACG GA TTCCTTT TCC GT-3), ont été utilisés comme aptamères de liaison et non liant EpCAM, respectivement10. L’extrémité 3' du TEPP et du TENN a été marquée avec un fluorophore TYE665.
TEPP est un aptamère bifonctionnel qui cible EpCAM d’une extrémité et TfR de l’autre. Cela a fait de TEPP un candidat approprié pour l’administration de médicaments aux tumeurs cérébrales EpCAM+ . À l’aide de son extrémité spécifique au TfR, le TEPP traverse la barrière hémato-encéphalique et, à l’aide de l’extrémité spécifique à l’EpCAM, trouve la tumeur et délivre sa cargaison (par exemple, les médicaments cytotoxiques) à la tumeur. TENN a une longueur et une structure 2D similaires à celles du TEPP, mais il n’a pas d’affinité pour l’EpCAM ou le TfR, et est donc un aptamère de contrôle négatif approprié. À l’aide de TEPP et de TENN, le test de la liaison d’un aptamère à la protéine cible à l’aide de la cytométrie en flux est présenté dans cet article. Ce protocole s’applique au développement d’aptamères spécifiques aux cellules. Elle est également applicable à d’autres analyses complémentaires et de confirmation des séquences d’aptamères disponibles dans la littérature. Le protocole peut également être utilisé par les nouveaux arrivants dans le domaine des aptamères qui envisagent d’utiliser un aptamère déjà publié à des fins de recherche et développement (R & D). Dans cet article, deux séquences d’aptamères disponibles dans la littérature sont étudiées.
REMARQUE : Avant de commencer l’expérience, portez un équipement de protection individuelle, y compris une blouse de laboratoire, des gants et des lunettes de protection. Consultez le tableau des matériaux pour plus de détails sur les matériaux, les réactifs, l’équipement et les logiciels utilisés dans ce protocole.
1. Tampons requis pour le test
Ingrédients | Volume requis | ||
Article | Concentration | ||
Tampon SELEX | MgCl2 | 5 mM | 50 μL par échantillon + 10 % d’erreur de pipetage |
Blocage de la mémoire tampon | MgCl2 | 5 mM | 500 μL par lignée cellulaire |
BSA a | 1 mg/mL | ||
ARNt b | 0,1 mg/mL | ||
FBS c | 10 % (v/v) | ||
Tampon de lavage | MgCl2 | 5 mM | 1 mL pour le premier lavage + 100 μL par échantillon d’essai + 10 % d’erreur de pipetage |
Tampon de liaison | MgCl2 | 5 mM | 50 μL par échantillon + 10 % d’erreur de pipetage |
BSA | 2 mg/mL | ||
Trna | 0,2 mg/mL | ||
FBS (en anglais seulement) | 20 % (v/v) |
Tableau 1 : Tampons requis pour le test de liaison. un Albumine sérique bovine, bAcide ribonucléique de transfert, cSérum bovin fœtal.
2. Préparation des aptamères
REMARQUE: Les aptamères utilisés dans le test sont marqués avec une molécule rapporteur de fluorescence, et donc des précautions doivent être prises pour les protéger de la lumière.
Figure 1 : Schéma montrant les étapes de préparation des aptamères. 1 Stock 1est stocké à -20 °C pour une conservation à long terme. deux Les concentrations de travail sont préparées dans un tampon SELEX et ne sont pas stockées. Veuillez cliquer ici pour voir une version agrandie de cette figure.
3. Maintien des cellules cancéreuses
REMARQUE: Avant de commencer l’étude, assurez-vous que les cellules sont à leur nombre de passages précoces, montrent leurs caractéristiques morphologiques typiques et sont exemptes de mycoplasmes. Pour tester la sélectivité et la spécificité de l’aptamère, des lignées cellulaires hautes, modérées et faibles/négatives exprimatrices de la protéine d’intérêt sont idéalement nécessaires.
4. Dosage de liaison
REMARQUE : La figure 2 résume les étapes requises dans l’essai de liaison dans les cellules adhérentes.
Figure 2 : Diagramme illustrant les étapes de la réalisation d’un test de liaison aptamère-protéine. Abréviations : SELEX = évolution systématique des ligands par enrichissement EXponentiel ; BB = tampon de blocage; WB = Tampon de lavage; BiB = Tampon de liaison. Veuillez cliquer ici pour voir une version agrandie de cette figure.
Figure 3 : Diagramme montrant les différents types de cellules et d’aptamères nécessaires pour effectuer le test de liaison des aptamères. Abréviation : EpCAM = molécule d’adhésion cellulaire épithéliale. Cette figure a été créée à l’aide de Biorender.com. Veuillez cliquer ici pour voir une version agrandie de cette figure.
5. Cytométrie en flux et analyse des données
REMARQUE: Avant d’allumer le cytomètre en flux, assurez-vous qu’il n’y a pas de « bulles » dans les unités de filtration à membrane pour la solution d’arrêt, la solution de nettoyage et le liquide de gaine (0,9% NaCl). « Saigner » bulles s’il y a des bulles dans les capsules. Assurez-vous que le conteneur à déchets est vide et que les récipients de liquide de gaine, d’eau et d’eau de Javel à 1% dans de l’eau ultrapure sont pleins.
Un aspect important de la découverte et du développement de nouveaux médicaments est d’assurer la sélectivité et la spécificité du candidat médicament. Cela signifie que le candidat médicament devrait être capable de discriminer entre différentes cellules et n’affecter que la population cellulaire d’intérêt (sélectivité). La sélectivité est étudiée à l’aide de lignées cellulaires qui diffèrent en termes d’expression de la protéine d’intérêt. Dans cette étude, les lignées cellulaires...
Le principal défi avec le développement de nouveaux aptamères est l’absence de lignes directrices standard qui s’appliquent aux différentes étapes de ce processus. McKeague et coll. ont récemment démontré certains des défis connexes, qui mènent à des présentations peu claires des données dans les publications et à l’échec de la reproduction de la recherche. Ils ont proposé des lignes directrices fondamentales nécessaires à la caractérisation des aptamères19. Un test de li...
Les auteurs n’ont aucun conflit d’intérêts à divulguer.
Les auteurs reconnaissent le financement SEED de l’Institute for Mental and Physical Health and Clinical Translation (IMPACT), le programme « Alfred Deakin Postdoctoral Research Fellowship » de l’Université Deakin et la « Australian Government Research Training Program Scholarship ».
Name | Company | Catalog Number | Comments |
1.5 mL microcentrifuge tubes with attached lid | Sigma-Aldrich | T6649 | |
15 mL CellStar blue screw cap, conical bottom tube | Greiner Bio One | 188271 | |
5 mL serological pipettes | Greiner Bio One | 606180 | |
BD FACSCanto II Flow Becton Dickinson Cytometer | Becton Dickinson | N/A | |
BD FACSDiva V9.0 | BD Biosciences | N/A | |
Bovine Serum Albumin (BSA), Lyophilized powder | Sigma-AldrichTM | A7906-50G | |
Bright-line Hemocytometer | Sigma-Aldrich | Z359629 | |
Dulbecco’s Modified Eagle Medium (DMEM) High Glucose Media Powder | Life Technologies | 12100046 | |
Dulbecco’s Phosphate- Buffered Saline (DPBS) | Life Technologies | 21300025 | |
FlowJo, LLC 10.8.1 | BD Biosciences | N/A | |
Foetal Bovine Serum (FBS) | Bovogen | SFBS-F | |
HEK293T | American Type Culture Collection | ACS-4500 | |
Heracell 150i CO2 Incubator | Thermo Fisher Scientific | N/A | |
Heraeus Megafuge 16R Centrifuge | Thermo Fisher Scientific | N/A | |
Magnesium Chloride (MgCl2) | Sigma-Aldrich | M8266 | |
MDA-MB-231 | American Type Culture Collection | CRM-HTB-26 | |
Microplate, PS, 96 well, F-bottom (Chimney well), Black | Greiner Bio One | 655076 | |
MiniAmp Thermal Cycler | Thermo Fisher Scientific | A37834 | |
Phosphate-Buffered Saline (PBS) tablets | Life Technologies | 18912014 | |
Pyrogen- and RNase-free ultrapure water | Milli-Q | ||
T75 Cell Culture flask | Cellstar | 658170 | |
TENN | Integrated DNA Technologies | N/A | 5′-GC GCG TGCA CGC GC TA ACG GA TTCCTTT TCC GT-3 |
TEPP | Integrated DNA Technologies | N/A | 5′-GC GCG GTAC CGC GC TA ACG GA GGTTGCG TCC GT-3′ |
Transfer RNA (tRNA) | Sigma-Aldrich | R8508-5X1ML | |
Trypan Blue Solution | Life Technologies | 15250061 | |
Trypsin-EDTA | Gibco | 15400054 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon