Achieving high quality and appropriate quantity of human islets is one of the prominent prerequisites for successful islet transplantation. In this video, we describe step by step the procedures for human pancreatic islet isolation (part I: digestion and collection of pancreatic tissue) using a modified automated method.
Achieving high quality and appropriate quantity of human islets is one of the prominent prerequisites for successful islet transplantation. In this video, we describe step by step the procedures for human pancreatic islet isolation (part II: purification and culture of human islets) using a modified automated method.
A microfluidic islet perifusion device was developed for the assessment of dynamic insulin secretion of multiple islets and simultaneous fluorescence imaging of calcium influx and mitochondrial potential changes.
The ability to produce transgenes for Caenorhabditis elegans using genomic DNA carried by fosmids is particularly attractive as all of the native regulatory elements are retained. Described is a simple and robust procedure for the production of transgenes via recombineering with the galK selectable marker.
A method of gene transfer into chicken embryos at later incubation stages (older than Hamburger and Hamilton stage (HH) 22) is described. This method overcomes disadvantages of in ovo electroporation applied to older chicken embryos and is a useful technique to study gene function and regulation at older developmental stages.
Microfluidic oxygen control confers more than just convenience and speed over hypoxic chambers for biological experiments. Especially when implemented via diffusion through a membrane, microfluidic oxygen can provide simultaneous liquid and gas phase modulations at the microscale-level. This technique enables dynamic multi-parametric experiments critical for studying islet pathophysiology.
The objective of this research was to form synthetic plant cell wall tissue using layer-by-layer assembly of nanocellulose fibrils and isolated lignin assembled from dilute aqueous suspensions. Surface measurement techniques of quartz crystal microbalance and atomic force microscopy were used to monitor the formation of the polymer-polymer nanocomposite material.
Single fluorophores can be localized with nanometer precision using FIONA. Here a summary of the FIONA technique is reported, and how to carry out FIONA experiments is described.
This protocol uses a balloon catheter to cause an intraluminal injury on the rat carotid artery and henceforth elicit neointimal hyperplasia. This is a well-established model for studying the mechanisms of vascular remodeling in response to injury. It is also widely used to determine the validity of potential therapeutic approaches.
Rodent thymectomy is a valuable technique in immunological research. Here, a protocol for complete thymectomy in adult rats using a mini-sternotomy along with non-invasive intubation and positive pressure ventilation to minimize perioperative morbidity and mortality is described.
Biofilms have complex interactions with their surrounding environment. To comprehensively investigate biofilm-environment interactions, we present here a series of methods to create heterogeneous chemical environment for biofilm development, to quantify local flow velocity, and to analyze mass transport in and around biofilm colonies.
A protocol for the preparation and characterization of lipophilic doxorubicin pro-drug loaded 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG) micelles is described.
A protocol for metabolic profiling of biological samples by capillary electrophoresis–mass spectrometry using a sheathless porous tip interface design is presented.
Here, we present a protocol for isolating gonadal tissue of larval zebrafish, which will facilitate investigations of zebrafish sex differentiation and maintenance.
This paper describes the operation procedure for the flow tube reactor and related data collection. It shows the protocols for setting the experiments, recording data and generating the number-diameter distribution as well as the particle mass information, which gives useful information about chemical and physical properties of the organic aerosols.
This paper describes operation procedures for the Harvard Environmental Chamber (HEC) and related instrumentation for measuring gaseous and particle species. The environmental chamber is used to produce and study secondary organic species produced from the organic precursors, especially related to atmospheric organic particulate matter.
This study describes the successful generation of a new chronic obstructive pulmonary disease (COPD) animal model by repeatedly exposing mice to high concentrations of ozone.
Dust charging and mobilization is demonstrated in three experiments with exposure to thermal plasma with beam electrons, beam electrons only, or ultraviolet (UV) radiation only. These experiments present the advanced understanding of electrostatic dust transport and its role in shaping the surfaces of airless planetary bodies.
This article provides a detailed protocol for the preparation and evaluation of monoclonal antibodies against natural products for use in various immunoassays. This procedure includes immunization, cell fusion, indirect competitive ELISA for positive clone screening, and monoclonal hybridoma preparation. The specifications for antibody characterization using MALDI-TOF-MS and ELISA analyses are also provided.
This manuscript describes the novel setup and operating procedure of a photoacoustic microscopy and optical coherence tomography dual-modality system for noninvasive, label-free chorioretinal imaging of larger animals, such as rabbits.
Here, we present a protocol to introduce a rat model of central fatigue using the modified multiple platform method (MMPM).
Here, we present a protocol to generate a human liver chimeric mouse model of familial hypercholesterolemia using human induced pluripotent stem cell-derived hepatocytes. This is a valuable model for testing new therapies for hypercholesterolemia.
Here, we present a protocol using the Drosophila sensory neuron - dendritic arborization (da) neuron injury model, which combines in vivo live imaging, two-photon laser axotomy/dendriotomy, and the powerful fly genetic toolbox, as a platform for screening potential promoters and inhibitors of neuroregeneration.
A method to generate a doxorubicin-induced cardiomyopathy model in adult zebrafish (Danio rerio) is described here. Two alternative ways of intraperitoneal injection are presented and conditions to reduce variations among different experimental groups are discussed.
Here, we present a protocol to establish the mouse depressive model, observe the behavior changes associated with chronic unpredictable mild stress (CUMS), and evaluate the anti-depression effect of Xiaoyaosan.
Here, we present a protocol for performing an intracapsular rotary-cut procedure (IRCP), a modified laparoscopic intracapsular myomectomy that promotes fertility preservation.
This work presents the preparation of methionine functionalized biocompatible block copolymers (mBG) via the reversible addition-fragmentation chain transfer (RAFT) method. The plasmid DNA complexing ability of the obtained mBG and their transfection efficiency were also investigated. The RAFT method is very beneficial for polymerizing monomers containing special functional groups.
We have previously used a gold nanoparticle peptide hybrid to intravenously deliver a synthetic peptide, protein kinase C-delta inhibitor, which reduced ischemia-reperfusion-induced acute lung injury. Here we show the detailed protocol of the drug formulation. Other intracellular peptides can be formulated similarly.
This conflict model is used to measure the impairment of inhibitory control after exposure to addictive drugs, or other factors that may influence inhibitory control. A sexual stimulus and an aversive obstacle are concurrently presented, thus male rats have to conquer the obstacle to approach the sexual reward.
This protocol describes optimization procedures in a virus-based dual fluorescence-labeled tumor xenograft model using larval zebrafish as hosts. This heterogeneous xenograft model mimics the tissue composition of pancreatic cancer microenvironment in vivo and serves as a more precise tool for assessing drug responses in personalized zPDX (zebrafish patient-derived xenograft) models.
Herein, a protocol to conduct the Morris water maze tests to evaluate the ability of learning and memory of Alzheimer’s Disease model mice and to assess the effect of manual acupuncture for treating them is described.
Here, we present a protocol to perform an invasive hemodynamic assessment of the right ventricle and pulmonary artery in mice using an open-chest surgery approach.
Here we present a training and testing system where a trainee can complete manual vascular reconstruction in vitro individually using a magnetic anchoring technique. The system can also be used to test the quality of reconstruction.
Presented here is a protocol for whole-mount in situ RNA hybridization analysis in zebrafish and tube formation assay in patient-derived induced pluripotent stem cell-derived endothelial cells to study the role of endoglin in vascular formation.
Here, we present three methods to assess neutrophil migration and infiltration both in vivo and in vitro. These methods can be used to discover promising therapeutics targeting neutrophil migration.
Here, we present a protocol to increase the surgical field of view and reduce the difficulty of total transperitoneal laparoscopic nephroureterectomy surgery by precutting the umbilical ligament before treating the terminal ureter.
In this protocol, a method of murine islet isolation and transplantation into the inguinal subcutaneous white adipose tissue is described. Isolated syngeneic murine islets are transplanted into a murine recipient using a basement membrane hydrogel. The blood glucose level of the recipients is monitored, and histology analysis of the islet grafts is performed.
In this protocol, a method for gene mining and sequence analysis of purine nucleosidase (PN, EC:3.2.2.1) based on RNA-Seq was described. ProtProm analysis was applied to show the unique secondary and tertiary structures of PN. Furthermore, the PN gene was cloned from transcriptome to verify the reliability of RNA-Seq results.
Here we present a protocol to characterize the complete biomolecular corona, proteins, and metabolites, acquired by nanomaterials from biofluids using a capillary electrophoresis – mass spectrometry approach.
Here, we describe a protocol for detection and localization of Drosophila embryo protein and RNA from collection to pre-embedding and embedding, immunostaining, and mRNA in situ hybridization.
The molecular structures and dynamics of solids, liquids, gases, and mixtures are of critical interest to diverse scientific fields. High-temperature, high-pressure in situ MAS NMR enables detection of the chemical environment of constituents in mixed phase systems under tightly controlled chemical environments.
Development of a Lateral Flow Immunochromatographic Strip for Rapid and Quantitative Detection of Small Molecule Compounds
Ubiquitination is a critical protein post-translational modification, dysregulation of which has been implicated in numerous human diseases. This protocol details how phage display can be utilized to isolate novel ubiquitin variants that can bind and modulate the activity of E3 ligases that control the specificity, efficiency, and patterns of ubiquitination.
This protocol describes a confocal imaging technique to detect three fusion modes in bovine adrenal chromaffin cells. These fusion modes include 1) close-fusion (also called kiss-and-run), involving fusion pore opening and closure, 2) stay-fusion, involving fusion pore opening and maintaining the opened pore, and 3) shrink-fusion, involving fused vesicle shrinkage.
Various animal models of pulmonary fibrosis have been established using bleomycin to clarify the pathogenesis of pulmonary fibrosis and find new drug targets. However, most pulmonary fibrosis models targeting lung tissue have uneven drug administration. Here, we propose a model of uniform pulmonary fibrosis induced by nasal bleomycin nebulization.
This study aims to create a 3D-printed model of a patient-specific lumbar vertebra, which contains both the vertebra and spinal nerve models fused from high-resolution computed tomography (HRCT) and MRI-Dixon data.
We present a protocol for using Fu's subcutaneous needling for knee osteoarthritis pain, which combines swaying movement and reperfusion approach techniques. This protocol has great potential for future applications in myofascial pain treatment and could enhance Fu's subcutaneous needling (FSN) manipulation skills.
The objective of this study is to develop a novel 3D digital model of pulmonary nodules that serves as a communication bridge between physicians and patients and is also a cutting-edge tool for pre-diagnosis and prognostic evaluation.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved