Accedi

Thermal Diffusivity and the Laser Flash Method

Panoramica

Source: Elise S.D. Buki, Danielle N. Beatty, and Taylor D. Sparks, Department of Materials Science and Engineering, The University of Utah, Salt Lake City, UT

The laser flash method (LFA) is a technique used to measure thermal diffusivity, a material specific property. Thermal diffusivity (α) is the ratio of how much heat is conducted relative to how much heat is stored in a material. It is related to thermal conductivity (Equation 1), how much heat is transferred through a material due to a temperature gradient, by the following relationship:

Equation 2 (Equation 1)

where ⍴ is the density of the material and Cp is the specific heat capacity of the material at the given temperature of interest. Both thermal diffusivity and thermal conductivity are important material properties used to assess how materials transfer heat (thermal energy) and react to changes in temperature. Thermal diffusivity measurements are obtained most commonly by the thermal or laser flash method. In this technique a sample is heated by pulsing it with a laser or xenon flash on one side but not the other, thus inducing a temperature gradient. This temperature gradient results in heat propagating through the sample towards the opposite side, heating the sample as it goes. On the opposite side an infrared detector reads and reports the temperature change with respect to time in the form of a thermogram. An estimate of the thermal diffusivity is obtained after these results are compared and fit to theoretical predictions using a least squares model.

The laser flash method is the only method that is supported by multiple standards (ASTM, BS, JIS R) and is the most widely used method for determining thermal diffusivity.

Procedura
  1. Turn on the machine and wait for the warm-up process to end (approximately 2 hours).
  2. Fill up the detector compartment with liquid nitrogen using a small funnel until the nitrogen vapor can be seen coming from the detector. Let the liquid settle until there is no more vapor coming out and close the detector.
  3. Measure the thickness of your sample with a micrometer over several spots and calculate the average thickness and the standard deviation. The edges of the sample should be between 6mm and 25.4mm, with a flat geo

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

Figures 1, 2, and 3 show the data from an LFA run of an iron standard sample. Figures 1 and 2 show laser pulse vs time plots for two temperatures (48.2°C and 600°C); the blue trace shows the collected laser pulse from the iron sample and the thin red line shows the calculated pulse from the Cowan model. Both temperature pulses fit well to the model because this is a well-defined standard material. Generally, experimentally calculated values match the Cowan model best at high tem

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Thermal DiffusivityLaser Flash MethodHeat TransferTemperature ChangesThermal ConductivityDensitySpecific Heat CapacityMetalPlasticLaser Flash AnalysisLFASample Preparation

Vai a...

0:07

Overview

1:35

Principles of the Laser Flash Method

3:35

Laser Flash Measurement

7:31

Analysis of the Data

8:41

Applications

10:01

Summary

Video da questa raccolta:

article

Now Playing

Thermal Diffusivity and the Laser Flash Method

Materials Engineering

13.0K Visualizzazioni

article

Optical Materialography Part 1: Sample Preparation

Materials Engineering

13.0K Visualizzazioni

article

Optical Materialography Part 2: Image Analysis

Materials Engineering

8.7K Visualizzazioni

article

X-ray Photoelectron Spectroscopy

Materials Engineering

21.0K Visualizzazioni

article

X-ray Diffraction

Materials Engineering

85.6K Visualizzazioni

article

Focused Ion Beams

Materials Engineering

8.7K Visualizzazioni

article

Directional Solidification and Phase Stabilization

Materials Engineering

6.4K Visualizzazioni

article

Differential Scanning Calorimetry

Materials Engineering

35.5K Visualizzazioni

article

Electroplating of Thin Films

Materials Engineering

19.4K Visualizzazioni

article

Analysis of Thermal Expansion via Dilatometry

Materials Engineering

15.4K Visualizzazioni

article

Electrochemical Impedance Spectroscopy

Materials Engineering

22.7K Visualizzazioni

article

Ceramic-matrix Composite Materials and Their Bending Properties

Materials Engineering

7.9K Visualizzazioni

article

Nanocrystalline Alloys and Nano-grain Size Stability

Materials Engineering

5.0K Visualizzazioni

article

Hydrogel Synthesis

Materials Engineering

23.1K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati