A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Presented here is a protocol for using multicolor lineage tracing and nearest-neighbor modeling to identify clonally derived cardiomyocytes during growth and regeneration in mice. This approach is objective, works across different labeling conditions, and can be adapted to incorporate a variety of image analysis pipelines.
By replacing lost or dysfunctional myocardium, tissue regeneration is a promising approach to treat heart failure. However, the challenge of detecting bona fide heart regeneration limits the validation of potential regenerative factors. One method to detect new cardiomyocytes is multicolor lineage tracing with clonal analysis. Clonal analysis experiments can be difficult to undertake, because labeling conditions that are too sparse lack sensitivity for rare events such as cardiomyocyte proliferation, and diffuse labeling limits the ability to resolve clones. Presented here is a protocol to undertake clonal analysis of the neonatal mouse heart by using statistical modeling of nearest neighbor distributions to resolve cardiomyocyte clones. This approach enables resolution of clones over a range of labeling conditions and provides a robust analytical approach for quantifying cardiomyocyte proliferation and regeneration. This protocol can be adapted to other tissues and can be broadly used to study tissue regeneration.
A histologic hallmark of heart failure is the loss of cardiomyocytes (CMs), either following injury, senescence, or apoptosis1. Replenishing lost or dysfunctional myocardium through tissue regeneration represents a potential therapeutic strategy for curing patients with heart failure. Over the past several decades, seminal advances in developmental and regenerative biology have unearthed a limited ability for the mammalian heart to replenish lost CMs2,3,4,5. This exciting work has raised the possibility that inna....
All procedures for handling mice, performing survival surgeries, and for harvesting hearts require approval by a local institutional animal use committee.
1. Mice for clonal analysis of CMs
Following the protocol for neonatal cryoinjury should yield P21 hearts with and without injury. Cryoinjured hearts have a well-circumscribed injury while the surface of sham hearts is smooth and homogeneous. In cryoinjured hearts, the area of injury should be consistent from heart to heart. After microscopy, images similar to Figure 1 should be obtained. Note that the image resolution allows for identification of individual CMs and imaging conditions allow for each fluorophore to be resolved.......
Multicolor lineage tracing is a powerful approach to identify patterns of organ growth with single cell resolution. However, a major limitation to multicolor lineage tracing is the need for sparse labeling of cells, which can reduce the sensitivity for identifying rare events. For organs like the heart with notoriously low levels of parenchymal cell turnover, this can lead to underestimates of growth responses. Presented here is a step-by-step protocol for performing clonal analysis of CM expansion during growth and rege.......
This work was funded by an R03 HL144812 (RK), a Duke University Strong Start Physician Scientist Award (RK), a Mandel Foundation Seed Grant (RK), and a T32 HL007101 Training grant (DCC). We would additionally like to acknowledge Evelyn McCullough for assistance with mouse husbandry and Dr. Douglas Marchuk and Matthew Detter for helpful comments and discussion. Finally, we would like to thank Purushothama Rao Tata for kindly providing R26R-Rainbow mice.
....Name | Company | Catalog Number | Comments |
#1.5 glass coverslip | FisherScientific | 12-544E | |
6-O prolene | Ethicon | 8706H | |
Anti-fade mounting medium | FisherScientific | 00-4958-02 | |
CO2 inhalational chamber | |||
Cold pack | |||
Cryomolds | VWR | 15160-215 | |
Cryoprobe | World Precision Instruments | 501313 | |
Filter cubes | |||
Gt(ROSA)26Sortm1(CAG-EGFP,-mCerulean,-mOrange,-mCherry)Ilw mice | |||
ImageJ software | https://imagej.net | ||
KCl 1M | FisherScientific | LC187951 | |
Leica CM3050 cryostat | |||
Liquid Nitrogen | |||
Microscissors, 6mm | World Precision Instruments | 14003 | |
Myh6-CreERT2 mice | The Jackson Laboratory | 005657 | |
Needler holder | World Precision Instruments | 14109 | |
Paraformaldehyde 4% | FisherScientific | AC416785000 | |
Phosphate buffered saline | |||
Python | https://www.python.org/ | ||
R | https://cran.r-project.org/ | ||
Rotating Shaker | |||
Stereoscope | |||
Sucrose 30% (wt/vol) | FisherScientific | BP220 | |
Surgical dissecting scissors | World Precision Instruments | 14393 | |
Syringe for tamoxifen | VWR | BD328438 | |
Tamoxifen, 20 μg | Sigma | T5648 | |
Tissue Freezing Media | VWR | 15148-031 | |
White Frosted/Plus slides | Globe Scientific | 1358W | |
Zeiss Axio Imager M1 upright widefield fluorescence system | |||
Zen 2.5 Blue software |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved