Method Article
Studies of biomolecules in vivo are crucial for understanding molecular function in a biological context. Here we describe a novel method allowing the internalization of fluorescent biomolecules, such as DNA or proteins, into living microorganisms. Analysis of in vivo data recorded by fluorescence microscopy is also presented and discussed.
The ability to study biomolecules in vivo is crucial for understanding their function in a biological context. One powerful approach involves fusing molecules of interest to fluorescent proteins such as GFP to study their expression, localization and function. However, GFP and its derivatives are significantly larger and less photostable than organic fluorophores generally used for in vitro experiments, and this can limit the scope of investigation.
We recently introduced a straightforward, versatile and high-throughput method based on electroporation, allowing the internalization of biomolecules labeled with organic fluorophores into living microorganisms. Here we describe how to use electroporation to internalize labeled DNA fragments or proteins into Escherichia coli and Saccharomyces cerevisiæ, how to quantify the number of internalized molecules using fluorescence microscopy, and how to quantify the viability of electroporated cells. Data can be acquired at the single-cell or single-molecule level using fluorescence or FRET. The possibility of internalizing non-labeled molecules that trigger a physiological observable response in vivo is also presented. Finally, strategies of optimization of the protocol for specific biological systems are discussed.
生きた細胞内部の大部分の蛍光の研究では、GFP 1などの蛍光タンパク質(FPS)、とのタンパク質融合に依存します。これらの蛍光タグは、遺伝子発現または膜輸送2-7のようなプロセスに関与するタンパク質のコピー数、拡散パターンまたは局在化の研究を可能にする。 FPSが高いラベリング特異性、容易な実装を提供し、様々な光物理的および化学的性質1を有する変異体の大規模な在庫でご利用いただけます。しかし、有機蛍光色素分子は、in vitroで彼らの大きな光安定性のための実験(最大のFPよりも安定100倍)8,9、小さいサイズ(最大のFPよりも小さなボリュームを100倍)と分子内ラベリングを容易にするために主要な選択肢のまま(主にシステイン残基の使用による)。これらの要因はすべて、単一分子蛍光のために特に重要であり、FRETが10を検討する 。
いくつかの内部移行方法のCOMBIN有機標識およびin vivo検出に有利で るが過去10年間に導入されている。しかしながら、このような方法は、非天然アミノ酸15の使用を必要とするか、 例えば、(大きな単一膜の真核細胞に限定され、比較的大きなポリペプチドタグ( 例えば 、TMP、HALO、または20kDaのSNAPタグ)11-14を使用するいずれか。 、ロード、注射器のロード、マイクロインジェクション)16-19をこすり。
このプロトコルは、新規な、 インビボでの観察と結合する有機蛍光体の長所を簡単かつ高スループットの内在化方法を記載している。この技術を開発するために、我々は、Eのように、一般に微生物をロードするために、プラスミドDNA 20,21を用いて細胞を形質転換するために使用されるエレクトロポレーションの手順を適合さcoliまたはS.有機的にラベル生体分子と出芽酵母 。プロトコルは4簡単な手順で構成されています。ラベルの生体分子と細胞のインキュベーション、エレクトロポレーション、細胞の回収、および細胞洗浄は、非内在化生体分子を除去する。ここで、我々は、細胞ベースの単一分子蛍光を研究するために、このエレクトロポレーションプロトコル、ならびに細胞イメージングおよびデータ分析プロセスを提示し、信号をFRET。
エレクトロポレーションは、生体分子( 図1)20,21細胞に進入できるような一過性の膜孔を形成するために低イオン強度細胞懸濁液を横切って高電圧電場を放電に依存している。ただ、プラスミドDNAと細菌または酵母の形質転換と同様に、細胞は、それらのelectrocompetencyを確実にするために電気穿孔する前に用意しなければならない。この手順は、水で数回の洗浄工程からなる、膜透過性を増加させ、エレクトロポレーションキュベット中でのアーク放電を回避するために、細胞溶液のイオン強度を低下させる。このプロトコルでは、細胞は、(PROTOCOL参照:1.1)を下記のように調製することができるか、商業プロバイダから購入S。
図1:内在化プロトコルの概略図左から右へ:エレクトロコンピテント細胞(二重に標識されたDNA断片と、この例では、細菌)のアリコートに標識された生体分子の数マイクロリットルを加える。氷上で1から10分間インキュベートし、予め冷却したエレクトロポレーションキュベットに移す。エレクトロポレーションし、すぐ後に、細胞に0.5〜1ミリリットル豊富な培地を追加します。細胞が回復させるために37℃(または生物によって必要な温度、 例えば、酵母のための29℃)でインキュベート。余分な非内部化標識分子を除去するための5回の洗浄工程を行う。 PBS緩衝液およびピペットアガロースパッド上に10μlの100〜200μlの最終ペレットを再懸濁。 (広視野モードまたはHILOモード)蛍光顕微鏡での清掃カバーガラスと画像とのパッドをカバーしています。
エレクトロ細胞はほとんどの生化学研究室で見られる標準エレクトロポを使用して行うことができるだけでエレクトロポレーションの前にラベル生体分子、とインキュベートする。直ちにエレクトロポレーション後、細胞を、( 図1)を洗浄する前に、リカバリを可能にする富栄養培地中でインキュベートする。非内在化標識生体分子の過剰な第1の塩のかなり高い濃度といくつかの界面活性剤を含有する緩衝液中で洗浄することにより除去される(3.3 PROTOCOL参照 )。塩の存在は、そうでなければ、外膜に付着も非内部化ラベル生体分子によって形成され、非特異的な静電相互作用を破壊。同様に、洗浄緩衝液中の界面活性剤の存在は、非特異的疎水性相互作用を破壊する。
DNAの内在化は、( 図2)簡単ですがエレクトロポレーションを用いて標識されたタンパク質を内部移行する際、予防措置が取られる必要がある。まず、有機的に標識されたタンパク質のストック·サンプルは、まだ遊離色素の小さな割合が含まれる場合があります。遊離色素分子は、タンパク質よりもはるかに小さいので、優先的に内在化されるかもしれない。観察に内在蛍光分子の大部分は、目的のタンパク質に対応するように、初期のタンパク質試料は、〜2%遊離色素( 図5)22未満含まれている必要があります。非内在化さ標識タンパク質の過剰もエレクトロポレーション後、外側細胞膜に固執することができます。この現象は、タンパク質特異的であり、それぞれの新しいタンパク質をチェックする必要がある。我々は(:3.3.3プロトコルを参照してください)ロードされた細胞試料からの非内部化タンパク質の除去を可能にするいくつかのオプションを提案する。
最後に、細胞をリン酸緩衝液を少量に再懸濁し、蛍光顕微鏡でその画像化を可能にする、アガロースのパッド上にピペット。アガロースパッド上固定化は、SIMPLですEとそれらの完全性を損なうことなく、カバースリップ上の細胞を画像化する効率的な方法。パッドは、低蛍光培地が含まれている必要があります。
細胞イメージングを行うことができるいずれかの広視野、全内部反射蛍光(TIRF)またはHILO(高傾斜及び積層光学シート)を使用して顕微鏡検査。 HILO構成では、レーザビームは、TIRFよりも試料に深く浸透し、まだ大きな信号対雑音比23を可能にする、広視野用として試料全体を点灯しない。使用されるレーザパワーと時間分解能に応じて、内在化生体分子は、(段階的に、光退色分析を用いて、 図3)をカウント局在化、または24-28を追跡することができる。フルオロフォアのFRET対で二重に標識された構築物の内在化は、単一細胞または単一分子レベル( 図6)でのFRETの両方の定量化を可能にする。
異なるパラメータを変化させることができる所望の出力に応じて、及び生物学的システムを研究。まず、細胞当たりの内在化材料の量は、標識された生体分子の濃度を変えることによって調整することができるエレクトロポレーションの前( 図2)を細胞に添加した。エレクトロポレーションの電界強度も荷重効率および細胞生存率の両方に影響する。予想されるように、増加する電界強度と積載効率が増加しながら、エレクトロポレーションした細胞の生存率は、( 図4A)を減少させる。両方のパラメータは、エレクトロポレーションの後にロードされ、分裂細胞の割合を記録することによって定量することができる。蛍光イメージングと相まって、この生存率アッセイはまた、 生きた細胞内に内在化生体分子の観察を検証し、数世代( 図4B)にわたって連続観測を可能にします。
要約すると、このプロトコルは、に蛍光標識DNAおよびタンパク質分子の内在化を可能にする大腸菌またはS. cerevisiaeの 26。有機フルオロフォアで標識された個々の分子は、一桁長い時間スケールのためのFPよりも高い時空間解像度で追跡することができる。最後に、この方法は、広視野、TIRFおよび共焦点検出、ならびにALEX(レーザー励起28,29を交互に)としてパルス励起スキームと互換性がある。
1.細胞の準備
2.アガロースパッド調製
3. Electroporatイオン
4.顕微鏡データの取得
注:生きた微生物中の単細胞および単一分子蛍光顕微鏡は、任意の適切な蛍光顕微鏡(特注のまたは商業)で行うことができる。
5.データ分析
試料調製
プロトコルの異なるステップは、 図1の回路図として示されている。一例として、我々は二重標識(ドナー色素およびアクセプター色素)でDNA断片を細菌の負荷を示した。代表的なDNAの内在化の結果を図2に示す。各エレクトロポレーションサンプルは、空のセルのためのデータと非エレクトロポレーションした細胞はまた、( 図2)を記録した。 「空のセルは、「蛍光生体分子とインキュベートすることも、エレクトロポレーションどちらの細胞をエレクトロに対応。蛍光チャネルにおけるそれらの強度は、同一の実験条件(レーザパワー、時間分解能、温度など)下での自己蛍光のレベルを反映する。 「非エレクトロポレーションした細胞」(別名-EP、 すなわち 、マイナスEP)は、細胞を蛍光biomolecとインキュベートされたエレクトロいるネガティブコントロールに対応ulesではなく、電気穿孔した。これらの非エレクトロポレーションした細胞は、空の細胞の自家蛍光と同様、ロードされ、エレクトロポレーションした細胞で表示される蛍光強度よりも有意に低い蛍光レベルを示すべきである。これは、外側の細胞膜に付着している可能性のある非内在化標識生体分子の除去を確認する。
図2:細菌において異なる濃度で異なる蛍光体で標識された二本鎖DNAの内部化(AE)及び酵母(F)のための代表的な結果を左から右へ:白色光、蛍光及びオーバーレイ画像。 - / + EPが/エレクトロポレーションとせずにインキュベーションを表す。スケールバー:3程度である。 A. CY3B二本鎖DNA、10pmolの、E.大腸菌 。 B. ATTO647N二本鎖DNA、10pmolの、E.大腸菌 。 C. Alexa647の二本鎖DNA、5 pmolの、大腸菌。 D. CY3B dsDNAを、100ピコモル、大腸菌。 E. ATTO647N DSDNA、100ピコモル、E.大腸菌 。 F. ATTO647N二本鎖DNA、30ピコモル、酵母。この図は、参照26から変更されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
セル当たりの内部化生体分子の数を数える
光退色分析を使用して細胞あたり内部移行標識生体分子の数を推定するための手順は、一緒に標識されたDNAの異なる濃度で得られた代表的な結果を、図3及び補足動画2に示されている。インキュベート標識されたDNAの初期量を持つ細胞積載効率が増加し、「単一分子」レベル(10 <10、補足ムービー2B)「アンサンブル」レベル(へ>チューニングするために、細胞当たり標識分子の数をユーザーに許可する、補足ムービー2A)。ロードされた細胞の割合を推定する確実な方法をtO、非エレクトロポレーションした細胞の平均細胞強度プラス3倍の標準偏差( すなわち 、のAv(I-EP)+ 3 * STDDEV(I-EP)のAv =平均より上の細胞強度を表示するエレクトロポレーションした細胞の数を数えるI =ピクセルあたりの強度、基準色。開発=標準偏差-EP =非エレクトロポレーション) を図3に示すように。
図3:退色分析を使用して内在化分子の数を数える(A)単セル退色分析。蛍光強度timetracesの例(青:生データ;赤色:適合;挿入図:WL前および漂白後ATTO647N標識二本鎖DNAを装填した大腸菌の蛍光画像)。上:シングルステップ漂白イベント。ミドル:漂白を示す±3分子を含む細胞点滅。底部:6未満の区別可能なステップを含む57細胞からの自動化された段階フィッティングアルゴリズムからのシングルステップ高強度の少なくとも10分子に対応する> 10のステップを含む細胞(B)のヒストグラム。単一ガウスフィットは、毎秒8100光子の単一のフルオロフォアの強度に対応し、11±3 auの中心とする。アスタリスクは、単一の蛍光団強度で初期の蛍光強度で除して計算しATTO647N dsDNAの異なる量、でエレクトロセル当たりに内在分子の50 AU(C)ヒストグラム上または同等のすべてのステップの高さを収集ビンをマーク。上から下へ:空のセル( すなわち 、蛍光分子とインキュベートしていないし、エレクトロポレーションではない)、非電気穿孔(ただし、蛍光分子、名前-EPとインキュベート)、およびエレクトロポレーションした細胞は、10〜100ピコモル(EP +という名前の)二本鎖DNAとインキュベートした。空の非エレクトロポレーションした細胞を対応自家蛍光に、エレクトロポレーションした細胞は、100ピコモル(≥4分子、アスタリスクでマークされたビンを参照)での高負荷細胞のより高い割合で、内部移行した分子の広い分布を示したのに対し。内在化効率(int型を有する細胞の割合> + 3×基準色。開発を意味する。非-EP試料)10及び100pmolのサンプルについて、それぞれ、94%および90%であった。 10 pmolのdsDNAのための121±106分子、および100 pmolのdsDNAのための176±187分子:細胞あたりの内部化分子の数を意味する。セッティング:100ミリ秒露出、広視野照明。スケールバー:1μmである。この図は、参照26から変更されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
セルの負荷および生存
標識された生体分子の量を変えることに加えて、エレクトロポレーションの前に細胞に添加ユーザーは、エレクトロポレーション中に異なる磁場強度を選択することによって調整するに内在する分子の量を( 図4、補足ムービー1)することができます。より高い電界強度が大きく、内在化効率をもたらすが、細胞生存率のわずかな減少をもたらす。タンパク質の内在化のために、ろ過工程の使用は非内部化標識タンパク質を(3.3.3.1.1参照)を排除できる場合があります。そのような場合、細胞ろ過は、観察された蛍光タンパク質が実際に細菌の細胞質の内部に内在化されることを保証する。我々は(詳細については、REF 22を参照)、濾過も細胞生存率に悪影響を与えることは、注意してください。
図4:セル·ローディングおよび生存時のエレクトロポレーション電圧の影響(A)のロードeffic上のエレクトロポレーションの電界強度の影響を表すバーグラフ。iency(赤いバー)と細胞(緑色のバー)の生存。 37℃でアガロースパッドの上に、1時間後の非電気穿孔細胞(0 kVの/ cm)の除算の84±8%。同じ条件の下では、78±3%、0.9 kVの/ cmであり、1.8 kVの/ cm 2でエレクトロポレーションした細胞の49±3%、それぞれ1時間後に分割します。細胞の92±6%が1.8 kVの/ cmの時にロードされている間、積載効率のために、細胞の73±8%は、0.9 kVの/ cm 2でロードされます。エラーバーは、3つの独立した測定値から算出した標準偏差を表す。 200以上の細胞を各サンプルと各繰り返しについて分析した。数世代にわたって細胞生存率のわずかな損害にエレクトロポレーション電圧の全体の積載効率が増加する。(B)細胞ベースの蛍光測定は、全体的な蛍光強度の両方の娘細胞間で均等に共有されていることを示している。セル1及び2は、t = 0でのスケールでの白色光画像における細胞数(左)および蛍光画像を指しバー:1μm)を。この図は、参照26から変更されている。
タンパク質の内在化
タンパク質の内在化のための代表的な結果は、 図5A&Bである。これは、エレクトロポレーションの前にできるだけタンパク質試料からの残りの空き(未反応)色素をできるだけ多く除去するために特に重要である。 図5A&B、CY3B標識ノウ断片試料(KF、 大腸菌 DNAポリメラーゼIのクレノウ断片であるCY3B-KF、66 kDa)のわずか1%の遊離染料を含むの例では、全体的なセル·ローディングにそのような色素の寄与は無視できる。遊離染料の当量でエレクトロ(標識タンパク質の同量とインキュベート)非エレクトロポレーションした細胞の両方で関心のエレクトロポレーションサンプルの比較だけでなく、細胞が観察された蛍光分子ことを保証するために2必要なコントロールを構成する確かに標識タンパク質を内在化される。
図5:生きた細菌中のタンパク質ナリ(A)ビューの代表的な蛍光オーバーレイフィールド。。細胞は、わずか1%の遊離CY3B染料を含まれるタンパク質ストック溶液から50ピコモルRNAPωサブユニットと1.4 kVの電圧でエレクトロ。非電気穿孔(非-EP)と空のセルは、以前のように定義されている。無料色素はRNAPωエレクトロポサンプル中と同じ濃度で内部移行されました。 1mWの、(A)におけるサンプルについて補正されていないセル平均強度の50ミリ秒の露出(B)分布における広視野モード、532 nmの励起での撮像、総細胞数の割合で与えられる。サンプルあたり400以上の細胞がセグメント化された。この図は、参照22から変更されている。unlaの(C)内在化T7プロモーターの制御下にあるpRSET-EmGFPコードするプラスミドエメラルドGFP(EmGFP)を有するエレクトロDH5αにbeled T7 RNAポリメラーゼ(T7 RNAP、98 kDaで)。左:アッセイの概略図。ミドル:蛍光オーバーレイ。右:非電気穿孔サンプル(上)のための細胞ベースの蛍光強度のヒストグラムは、細胞T7 RNAP(下部)とインキュベートし、エレクトロポレーション;エレクトロポレーションした細胞の約11%が高い蛍光強度を示した(INTを持つ細胞の割合を。> + 3X基準色。開発。非-EPサンプルの平均)EmGFPの発現を示す。 3〜:アスタリスクは、上記のすべての強度以上1100 AUのスケールバーを収集ビンを示している。この図は、参照26から変更されている。
図5Cは、タンパク質エレクトロポレーションの別のアプリケーションを提示します。ここでは、エレクトロポレーションしたタンパク質は、非標識であるが、その内在化が観察可能な蛍光応答をトリガします。この実験は、前の検証SENCEと細胞質内エレクトロポレーション、タンパク質の機能性。ラベルなしT7 RNAポリメラーゼ(98 kDa)が、Eに内部移行したT7プロモーター26の制御下で蛍光タンパク質EmGFPコードするプラスミドを含む大腸菌株 DH5α。 T7 RNAポリメラーゼの遺伝子はDH5αに存在しないように、我々の実験でEmGFP発現は、機能的なT7 RNAポリメラーゼは、エレクトロポレーション( 図5C)を介して細胞内に導入することを必要とする。 1ピコモルのT7 RNAPとエレクトロポレーションに続いて、>細胞(青色のバー、 図5C)の11%は、陰性対照(T7 RNAP同量のインキュベーションではなく、エレクトロポレーション)よりも高い蛍光を示した。この結果は、エレクトロポレーションによって内在T7 RNAP分子の割合は、in vivoでその完全性を保持し、細胞質中でそれらの意図された機能を実行することができることを立証する。
生体内では単一分子でFRET単一細胞レベル
最後に、生きた細菌中での二重標識種の内在化および分析は、蛍光タンパク質の融合は、生体内 smFRET研究のための理想的ではないとして、エレクトロポレーションを用いて生きた細胞内に二重標識生体分子を提供する能力が1つである図6に提示され、補足ムービー3です。この方法の大きな資産を。 図6(a)は、単一セルは、異なるFRET DNA標準(ドナー-アクセプターFRETペアとしてCY3BとAtto647N蛍光プローブを使用)を搭載した細菌の分析をFRET提示。細胞は、0.17、0.48、および0.86 インビトロ (以前は26を決定した)の見かけのFRET効率を有する3つの短い二重標識二本鎖DNA FRET基準の20ピコモル(E *)でエレクトロされている。 図6A(全てのDNAは、(左図6A、)を効率よく細胞に入り、それぞれの単セルEの主ピークは、*分布はインビトロの結果とよく一致する、右)。中悪性および高FRETサンプルにおける、低いおそらく受容漂白及び光物理的不活動、可変セル負荷の組み合わせに、観察される予想よりE *を(したがって、可変信号対雑音比)およびDNA分解による細胞集団。
図6:単一セルと単一分子のための代表的な結果は、生きた細菌で観察をFRETシングル細菌中のアンサンブルとsmFRET研究20pmolの低いを示す3つのDNA FRET基準の各(〜0.17)を搭載した細胞の(A)の分析、。。中間体(〜0.48)、および高い(〜0.86)FRET( インビトロでの単一分子測定を用いて測定した。REF 26を参照)。左:白色光と赤/緑(FRET)蛍光オーバーレイ画像(スケールバー:3μm)を。異なる細胞からのFRET値の例としては、(白)が示されている。リグ (上から下)htは:補正前の細胞ベースのFRET(E *)は、DNA標準をFRETドナーのみ (暗緑色)、低(ライトグリーン)、中間体(黄色)、および高(赤)のためのヒストグラム(B-D) 生体 smFRET で 。細胞は、0.25 pmolの中間-FRET DNA(パネルB)、0.25 pmolの高いFRET DNA(パネルC)、および5ピコモルの二重標識KF(パネルD)にロードされる。左の列:アクセプター光退色前後のシングルフレームの緑/赤の蛍光のオーバーレイ。中央の列:黄色い丸中の分子に対応する時間の痕跡。 FRETの効率は、ドナー発光強度、およびアクセプターの発光強度は、それぞれ、青、緑、赤で表示されている。右欄:ドナーのFRETヒストグラムのみ分子(緑色)およびドナー - アクセプター分子(黄色、赤、灰色)各試料について20時間トレースから。スケールバー:Aの3程度、B-Dのための1程度である。この図は、参照26から変更されている。208fig6large.jpg「ターゲット= "_空白">この図の拡大版をご覧になるにはこちらをクリックしてください。
FRETペア、図のように中距離および高FRET DNA標準( 図6B、C)または二重標識KF(Alexa647の/ CY3Bの蛍光団の5ピコモルのDNAまたはタンパク質のサンプル、低量(0.25ピコモル)のために、生体内で smFRETを観察する6D)は、Eに電気穿孔されている大腸菌 。このような濃度は、追跡、および単一分子の監視FRET、直接のローカライズを可能にし、いくつかの(N = 1-10)標識分子でロード多くの細胞につながった。他の人が不動現れたり(補足ムービー3)ゆっくりと拡散のに対し、いくつかの分子は、自由に拡散。 1から30秒のための最後の固定化された二重標識生体分子のTimetraces( 図6、中央)とsmFRETの顕著な特徴を示していますアクセプター漂白(例えば、t-〜16秒の際に、ドナーとアクセプター蛍光の反相関の変化を、 図6B、ミドル)、単一続く(例えば、T〜; 19秒; 図6B) -ステップドナー漂白。そのようなtimetraces( 図6、右)in vitro試験 26,31,32 に掲載さとよく一致している平均値の結果から生成されたFRETのディストリビューション。これらの結果は、内部移行したDNAやタンパク質に関する定量的smFRET研究のための能力を確立し、(T7 RNAP内在化実験によって支持される)タンパク質は、エレクトロポレーションおよび内在の際、整合性と構造を維持することを示唆している。
補足ムービー1:細胞生存率左:白色光画像。右:蛍光画像。アニメーションGIFは、10ピコモルのAtto647標識DNAを搭載した細菌のエレクトロポレーション(1.8 kVの/ cm)の後に分裂を示すのアニメーション。蛍光の全体の見かけの減少は、細胞分裂の際に標識されたDNAの希釈にも部分的に中に発生する光退色に起因する測定。
補足ムービー2:セルベースの光退色研究A.。高負荷のセルの代表例(> 100 Atto647N標識DNA分子を含有する)。左上は、目的の細胞の白色光画像(赤い四角形)。右上、数分間にわたって彼らの蛍光減衰を示す負荷細胞の映画。ボトムは、目的の細胞の全体的な蛍光強度の減衰の時トレース。有機フルオロフォアは、寿命のFPをより2桁(ここで、〜Atto647N 41秒)光退色示すことができる。 B. 10未満の標識分子(この場合は3)を装填し、細胞の代表的な例。パネルA.ボトム、関心単一工程の漂白を示す、および/または単一の有機フルオロフォアに対応する点滅の細胞の全体的な蛍光強度の時間トレースと同じトップ。これらのステップの平均高さは〜ここに(単一分子の単一強度に対応する12オー)細胞当たりの内在化分子の初期数を推定するために使用される。 300μW電力とフレームあたり100ミリ秒で連続赤色レーザー励起下作品。
補足ムービー3:I n は 単一分子FRETの体内トップ:0.25ピコモル( 図6Cのように)高FRET DNAを搭載した細胞は、継続的に1 MWの緑色(532nm)をレーザーを用いnTIRF照明下フレームあたり50ミリ秒で監視。各フレームは、各チャンネルの緑/赤(FRET)、蛍光のオーバーレイである。拡散不動赤(無傷)および緑色(単一活性標識)DNA分子を観察することができる。下:黄色い丸中の分子に対応する時間トレース。 FRETの効率は、ドナー発光強度、およびアクセプターの発光強度は、それぞれ、青、緑、赤で表示されている。反相関アクセプター漂白イベント(赤から緑色の遷移は)単一分子FRETの署名に対応している。
多くのパラメータは、細胞のエレクトロポレーションおよび対象の生物学的システムと実験(細胞レベルまたは単一分子分析)の正確な性質に応じて、データ取得中に変化させることができる。細菌にDNAをエレクトロポレーションする際に、例えば、標識されたdsDNAフラグメントの0.25〜5ピコモル(事前に光退色を必要とすることなく、 すなわち 、)直接の単一分子の検出を可能にする、低い内在化効率をもたらす。 5 pmolのdsDNAの上方には、細胞は、単一細胞分析のための体制が適し、高負荷になる傾向がある。すべての標識されたDNAはまた、DNAのストック溶液から遊離染料(未反応のフルオロフォア)の痕跡を除去するために、先にゲル精製しなければならない。また、特にsmFRET実験のためのDNAの分解、潜在的な問題は、非天然の核酸、またはそのようなヘアピンループとしてエキソヌクレアーゼアクセス可能な末端を保護するモチーフがDNAを使用することによって対処することができる。
もうadjustablエレクトロポレーションの電子パラメータは、エレクトロポレーションの際に印加される電界強度である。低い電界強度(〜1kVの/ cm)は、単分子研究のための適切な低充填効率につながる。 (1.8 kVの/センチまで)より高い電界強度が積載効率を増加させる。しかしながら、エレクトロポレーション後の電界強度と細胞生存率との間に逆相関がある( 図4参照)。参考のために、細菌および酵母エレクトロポレーションのために使用される通常の電界強度は〜1.5 kVの/ cmである。時定数は、すぐに任意のアーキング現象がキュベットで起こるように低下するので、この減衰の長さを表す時定数は、追従するための便利なパラメータである。通常の設定の下では、時定数は4ミリ秒以上でなければなりません。低い値は、低い積載効率あるいは非ロードされた損傷を受けた細胞につながる。ほとんどのエレクトロポレーターは、両方の曲に変更することができる(例えば、「パルス切り捨て」または「パルス状」のような)他の自由度を提供セル·ローディングおよび生存。私たちは、その膜は(単一脂質二重層)は実際それほど複雑ではないので同じような手順では、また、適切なエレクトロの設定を用いて哺乳動物細胞への標識生体分子の内在化を可能にするはずである、細菌や酵母の両方にこの方法を適用し、エレクトロポレーションは、すでにこのような細胞で使用されているため21。
標識されたタンパク質を内在化すると、すべての遊離の色素は、標識されたタンパク質のストック溶液エレクトロポレーションの前に除去する必要がある。遊離色素分子は、それらの小さいサイズに、目的のタンパク質よりも優先的に内在化し、(それらの予想より速い拡散にもかかわらず)は、データ分析の間を区別するのが困難であることができる。有機的に標識されたタンパク質のサンプルのためのガイドは、エレクトロポレーションのために適切であるとして、遊離色素の残存量が2%未満であるべきである22(SDS-PAGEの蛍光スキャニングを用いて検出)。このプロセスは、特に重要であるいくつかの分子は、エレクトロポレーション、細菌や酵母の外膜に付着することがありますように。この点において、陰性対照試料は、(任意の蛍光標識された生体分子と共にインキュベートもエレクトロポレーションされていない細胞、 図2)は、空のセルの自己蛍光のレベルとして、理想的な低エレクトロポレーションした細胞よりも明らかに低い細胞当たりの蛍光強度を表示すべきである。
二本鎖DNAの場合と同様に、標識されたタンパク質の内在化効率は、エレクトロポレーションの前に細胞に加え、生体分子の量にリンクされる。しかしながら、そのような大きさおよび電荷などの他のパラメータは、内在化において役割を果たす。小さ なタンパク質は、(kDaの98まで)より大きなタンパク質に対して、高い内部移行効率を示す成功し、より低い効率( 図5)26と内部移行することができる。タンパク質の等電点、細胞膜との相互作用の可能性、また、他の物理化学的パラメータエレクトロポレーション時の影響セル·ローディング。その結果、ユーザーは標識タンパク質(>50μM)の高い初期濃度が成功ロードするための最善の機会を与えることを知って、自分のシステムのための実験を最適化する必要があります。エレクトロポレーションも細胞(ラベルまたは非標識のいずれか)に、タンパク質および他の生体分子を導入することにより、細胞機能を撹乱し、分析するための新しいツールを提供しています。存在するT7 RNAポリメラーゼの実験( 図5C)、我々は電気穿孔法を用いてインビボで遺伝子発現を変更することができる生体分子を導入することができ、実験のような例。
単一分子蛍光実験を行う際には、カバースリップの表面(〜100nm)を上記の薄切片内の励磁のみフルオロフォアで最高の信号対雑音比を提供するように、TIR照明は、通常、他の照明モードよりも好まれる。しかし生きた微生物の中に拡散イメージングラベル生体分子が再かもしれない( 大腸菌用0.8ミクロンまで)帖より深い照明。高い信号対雑音比を維持しながら、より深い照明は、HILOモードで達成される。一方、広視野画像は、ユーザが高いレーザパワー全体ロードされたセルを光退色し、生産ユニタリ強度によって初期細胞の蛍光強度を割ることによって内在化される分子の数を推定された段階的な光退色の分析のために特に重要である単一分子(単一光漂白工程と、 図3)による。それらの軌道がセル全体の体積をカバーする場合でも、広視野イメージングはまた、関心のある拡散分子を局在化するために、長期的な分子の追跡に必要とされる。
このプロトコルでは、エレクトロポレーション、細胞内で核酸を送達するための生物学者や生化学者のための標準的な技術は、種々の細胞型蛍光生体分子を送達するための簡単な方法を構成する方法を提示する。目小説、ハイスループット技術は、それらのネイティブ環境で標識された分子を観察するユニークなツールを提供しています。広い波長範囲をカバーするフルオロフォアで標識された生体分子の付加では、エレクトロポレーションは、非天然のヌクレオチドおよびアミノ酸、金属キレート剤、架橋剤、及びケージング基のような多くの化学基で修飾された分子を送達することができる。対象の生物学的システムは、細胞の発達に必須ではない場合には内在化後に観察されたタンパク質は、細胞内タンパク質プールのすべて(またはほとんど)を表すことを保証する、標的タンパク質をコードする遺伝子はまた、削除することができる(またはノックダウン) 。本質的には、エレクトロポレーションは、「移植」生きている細胞へのin vitroでのバイオコンジュゲートの柔軟性、したがって、合成生物学、システム生物学の取り組み、および生体内の単一分子検出に利益をもたらすことができます。
The authors have nothing to disclose.
We thank Stephan Uphoff for discussions.
R.C. was supported by Linacre College, Oxford University. A.P. was supported by the German Academic Exchange Service (DAAD), the German National Academic Foundation and EPSRC. M.S. was supported by the Wellcome Trust. A.N.K. was supported by a UK BBSRC grant (BB/H01795X/1), and a European Research Council Starter grant (261227).
Name | Company | Catalog Number | Comments |
ElectroMax DH5-alpha Comptent cells | Invitrogen | 11319-019 | or any other commercial or lab-mage electrocompetant bacteria or yeast. |
EZ Rich Defined Madia | Teknova | M2105 | low fluorescence rich media |
MicroPulser Electroporation Apparatus | Biorad | 165-2100 | or any classical electroporator for microorganism transformation |
Certified Molecular Biology agarose | Biorad | 161-3100 | low fluorescence agarose for agarose pad |
Microscope coverslips No 1.5 thickness | Menzel | BB024060SC | remove background particles by heating slides in furnace at 500 °C for 1h |
Single-molecule fluorescence microscope | Home-built | described in REFs | |
Localization software | Custom-written, available online | MATLAB and C++ software package that can be adapted for localization analysis. | |
Tracking software | Available online | MATLAB implementation by Blair and Dufresne. |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved