JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、レーザーカット神経血管インプラントを用いた血液接触装置の包括的な血溶性評価について説明する。新鮮なヘパリン化されたヒト血液を有するフローループモデルは、血流を模倣するために適用される。灌流後、種々の血液学的マーカーを分析し、試験された装置の血相適合性評価のために採血後に直接得られた値と比較する。

要約

体内の循環系に残る一時的または永続的な目的のために医療機器(例えば、血管移植片、ステント、心臓カテーテル)の使用が増えている場合、これらの装置によって引き起こされる可能性のある血液学的合併症(すなわち、血液成分の活性化および破壊)を評価する信頼性の高いマルチパラメトリックアプローチが必要である。血液接触インプラントの包括的なインビトロヘモ適合性試験は、生体内での実装に成功するための第一歩です。したがって、国際標準化機構10993-4(ISO 10993-4)による広範な分析は、臨床応用前に必須です。提示されたフローループは、ステント(この場合は神経血管)の止血性能を分析し、悪影響を明らかにする敏感なモデルを記述する。新鮮な人間の全血と穏やかな血液サンプリングの使用は、血液の事前活性化を避けるために不可欠です。血液は、試験検体を含むヘパリンチューブを通して、37°Cで150 mL/minの速度で60分間の蠕動ポンプを使用して浸透する。灌流の前後、血液学的マーカー(すなわち、 血球数、ヘモグロビン、ヘマトクリット、および血漿マーカー)は、白血球(多形核[PMN]エラスターゼ)、血小板(β-トロンボグロブリン[β-TG])、凝固系(トンビンアンチトロンビンIII[TAT])、および補体カスケード(SC5b-9)の活性化を示す。結論として、我々は臨床応用前にステントおよび他の血と接触装置の広範なヘモ適合性テストのための必須で信頼できるモデルを提示する。

概要

ヒトの血液と相互作用するインプラントや生体材料の生体内応用には、止血システムの様々なマーカーの調査に焦点を当てた強力な前臨床試験が必要です。国際標準化機構10993-4(ISO 10993-4)は、血液接触装置(すなわち、ステントおよび血管移植片)の評価の中心原則を規定し、デバイス設計、臨床有用性、および必要な材料を考慮する。

ヒト血液は、白血球(白血球[BPC])、赤血球(赤血球[RBC])、血小板など、さまざまな形質タンパク質や細胞を含む流体であり、人体2において複雑な機能を行う。血液との異物の直接接触は、炎症または血栓性合併症および移植の深刻な問題を引き起こす可能性がある免疫または凝固系の活性化などの副作用を引き起こす可能性があります3,4,5.したがって、in vitroのヘモ適合性検証は、移植前に、異物表面6との血液の接触時に誘発される可能性のある血液学的合併症を検出および排除する機会を提供する。

提示されたフローループモデルは、脳の流れ条件と動脈径を模倣するためにチューブ(直径3.2mmの直径)に150 mL/minの流量を適用することによって神経血管ステントおよび類似の装置の血溶性を評価するために確立された2,7。最適なin vitroモデルの必要性に加えて、血液源は生体材料のヘモ適合性を分析する際に信頼性の高い、不変の結果を得るための重要な要因である8。採取した血液は、長期保存によって生じる変化を防ぐために、サンプリング直後に使用する必要があります。一般に、血液の採取中に血小板および凝固カスケードの事前活性化を最小限に抑えるために、21G針を使用して、スタシスのない血液の穏やかな収集を行う必要があります。さらに、ドナー排除基準には、喫煙、妊娠、健康状態が悪い、または過去14日間に経口避妊薬または鎮痛剤を服用した人が含まれる。

本研究では、フロー条件下でのステントインプラントの広範なヘモ適合性試験のためのインビトロモデルについて説明する。非コーティングとフィブリンヘパリンコーティングステントを比較した場合、包括的なヘモ適合性試験の結果は、フィブリンヘパリンコーティングステント9のヘモ適合性の改善を反映している。対照的に、コーティングされていないステントは、凝固カスケードの活性化を誘導し、トンビンアンチトロンビンIII(TAT)濃度の増加およびステント表面への血小板数の接着による血小板数の損失によって示される。全体的に、この血友適合モデルを前臨床試験として統合することは、装置によって引き起こされる止血システムに対するあらゆる悪影響を検出するために推奨される。

プロトコル

血液採取手順は、火ビンゲン大学の医学部の倫理委員会によって承認されました (プロジェクト識別コード: 270/2010BO1).すべての被験者は、参加前に包含のための書面によるインフォームド・コンセントを提供しました。

1. ヘパリンを積んだモノベットの準備

  1. 希釈されていないヘパリン(5,000 IU/mL)と塩化ナトリウム(NaCl、0.9%)を混ぜる15 IU/mLのヘパリンの結果濃度の溶液を調製した。
  2. 各中性モノベット(9 mL)に希釈ヘパリン溶液900μLを加えて、血液サンプリング後に1.5 IU/mLの最終ヘパリン濃度を得る。ドナー1人につき3個のモノベットと3枚のリザーブモノベットを用意し、ヘパリンを積んだモノベットを4°Cで血液サンプリングまで保存します。

2. 血液サンプリング

  1. 血液サンプリングの30分前に冷蔵庫からヘパリンを積んだモノベットを取り出します。
  2. フローループの静脈穿刺により、各健常ドナー(n=5)から27mLの血液サンプルを採取する。血小板と血液凝固カスケードの早期活性化を避けるために滑らかな止血帯のみを適用します。
  3. ヘパリン溶液(1.5 IU/mL)900 μLを含む3つのモノベットで血液サンプルを採取し、3つのモノベットをすべて1つのプラスチック容器にプールして、すべての成分が均等に分配されるようにします。
  4. プールされたヘパリン化された血液を、EDTA(1.2 mL)、クエン酸(1.4mL)、クエン酸、テオフィリン、アデノシン、ジピリダモレ(CTAD、2.7 mL)のいずれかを含む3つの異なるモノベットに直接移し、ベースライン値を収集する。セクション 5-8 で説明されているように、サンプルを続行します。
    注:影響を受けていない凝固行動を保証するために、ドナーは、過去14日以内に止止め薬(例えば、アセチルサリチル酸、ナプロキセン、カルベニシリン)の摂取、経口避妊薬および喫煙を避けるべきである。

3. フローループの準備

  1. ヘパリンコーティングポリ塩化ビニルチューブを3本カットし、長さ75cm、内径3.2mmで、フィブリンヘパリンコーティングの有無にかかわらず、神経血管レーザーカットインプラントでチューブをロードします。1 つの浴槽をコントロールとしてアンロードしたままにすることを忘れないでください。
  2. チューブの一方の端を0.9%NaClで満たされた貯水池に置き、チューブをポンプヘッドに接続し、もう一方の端を測定シリンダーに挿入します。
  3. 測定シリンダーの充填レベルを確認しながらタイマーを使用して、150 mL/minの流量を達成するために蠕動ポンプの設定を調整します。

4. ヘモ互換性テストの性能

  1. 血液でチューブを充填するために12 mLの注射器を使用してください。6 mLの血流をサンプルまたはアンロードされたコントロールを含む各チューブにスムーズに流れ込ませます。
  2. 回路を形成し、シリコン接続チューブの長さ0.5cmを使用してチューブをしっかりと閉じます。37°Cの水浴にチューブを入れ、60分間の灌流を開始します。

5. 全血数分析

  1. サンプリング後(ベースライン)またはEDTAを含むモノベットに灌流した後に1.2mLの血液を入れ、チューブ5xを慎重に反転させます。
  2. モノベットを血液分析装置に挿入し、すべてのサンプルの血球数分析を行います。次に、セクション7に記載されているように、さらに分析するために、血数測定後15〜60分間氷上のモノベットをインキュベートします。

6. クエン酸プラズマの収集

  1. クエン酸を含むモノベットを1.4mLの血液(新鮮な血液または循環後)で満たし、慎重に5倍を反転させます。
  2. 室温(RT)で1,800 x gで18分間チューブを遠心分離します。アリコート 3 つのプラズマ分率の 250 μL サンプルを 1.5 mL 反応チューブに入れ、プラズマサンプルを液体窒素で凍結します。分析まで-20°Cで保管してください。

7. EDTAプラズマの収集

  1. 血数測定後15~60分間、氷上のモノベットをインキュベートします。次いで、チューブを2,500xg及び4°Cで20分間遠心する。
  2. 遠心分離後の1.5 mL反応管にプラズマ分率の3つの250 μLサンプルをアリコートし、液体窒素中のチューブを凍結します。分析まで-80°Cで保管してください。

8. CTADプラズマの収集

  1. CTAD混合物を含むモノベットを2.7mLの血液(新たにまたはインキュベーション後)で満たし、慎重に5倍を反転させます。その後、氷上のモノベットを15~60分間インキュベートします。次いで、チューブを2,500xg及び4°Cで20分間遠心する。
  2. 中血漿分率700μLを1.5mL反応管に移し、充填された反応管を2,500 x gおよび4°Cで20分間遠心分離します。
  3. 遠心分離後の1.5 mL反応管に中画の2つの100 μLサンプルをアリコートし、液体窒素でチューブを凍結します。分析まで-20°Cで保管してください。
    注:EDTAプラズマとCTADプラズマの収集は、動作条件が同じであるため、一緒に行うことができます。

9. クエン酸プラズマからのヒトTATの測定

  1. 37°Cの水浴でクエン酸プラズマを解凍します。
  2. メーカーの指示に従って、TAT酵素結合免疫吸着測定(ELISA)キットをご使用ください。血漿規格を再構築し、洗浄液、抗ヒトTATペルオキシダーゼ(POD)共役抗体、およびクロモゲン溶液を希釈して、洗浄液を制御します。テストを開始する前に、すべての試薬とマイクロタイタープレートをRT(15-25°C)に30分間放置してください。
  3. サンプルバッファーの 50 μL をマイクロタイタープレートの各ウェルにパイプし、サンプルバッファー (ブランク)、プラズマ標準、プラズマ制御、および希釈されていないプラズマサンプルをウェルプレートに 50 μL 追加します。プレートを密封し、37°Cで15分間、穏やかな揺れでインキュベートします。その後、300μLの洗浄液でプレート3xを洗浄する。
  4. POD結合抗ヒトTAT抗体を100μLずつ添加します。プレートを密封し、37°Cで15分間、穏やかな揺れでインキュベートします。その後、300μLの洗浄液でプレート3xを洗浄する。
  5. 作りたてのクロモージェン溶液を100μLずつ加えます。プレートを密封し、RTで30分間インキュベートします。
  6. シールフィルムを取り外し、各ウェルに100 μLのストップ溶液を追加します。光密度(OD)を490-500 nmのフォトメーターで読み込みます。標準曲線データをトレンドラインとして適合させ、サンプルの濃度を計算します。

10. クエン酸プラズマからのPMN-エラスターゼの測定

  1. 水浴中のクエン酸プラズマを37°Cで解凍します。
  2. メーカーの指示に従って多形核(PMN)-エラスターゼELISAキットを使用してください:PMN-エラスターゼコントロールとPMNエラスターゼ標準を再構築し、キットの希釈バッファーを使用して標準曲線を作成します。
  3. メーカーの説明に従って洗浄液を希釈します。テストを開始する前に、すべての試薬とマイクロタイタープレートをRTに30分間放置してください。クエン酸プラズマサンプルを希釈バッファーで 1:100 に希釈します。
  4. サンプルバッファー(ブランク)、PMN-エラスターゼ標準曲線(15.6-1,000 ng/mL)、PMN-エラスターゼコントロール(高濃度および低濃度)、希釈された血漿サンプルをウェルプレートに加えます。プレートを密封し、RTで60分間穏やかな揺れでインキュベートします。その後、300 μLの洗浄液でプレート4xを洗浄します。
  5. 酵素共役抗体を各ウェルに150 μL添加します。プレートを密封し、RTで60分間穏やかな揺れでインキュベートします。その後、300 μLの洗浄液でプレート4xを洗浄します。
  6. 3,3',5,5'-テトラメチルベンジジン(TMB)基板溶液を各ウェルに200 μL添加します。プレートを密封し、暗闇の中で20分間RTでインキュベートします。次にシールフィルムを取り外し、各ウェルに50μLの停止溶液を加えます。
  7. 630 nmで参照読み取り値を持つ450 nmのフォトメーターでODを読み取ります。標準曲線データをトレンドラインとして適合させ、サンプルの濃度を計算します。

11. EDTAプラズマからの端子補体複合体(TCC)の測定

  1. 37°Cの水浴中のEDTAプラズマを解凍し、解凍後に氷の上に保管します。
  2. 補数カスケード SC5b-9 ELISA キットをメーカーの指示に従って使用します: メーカーのプロトコルに記載されているように洗浄液を希釈します。テストを開始する前に、すべての試薬とマイクロタイタープレートをRTに30分間放置してください。EDTAプラズマサンプルを、キットの希釈バッファーで1:10まで希釈します。
  3. 300 μLの洗浄液を各ウェルに加えて、2分後に表面を水分補給し、吸引します。
  4. プレートを密封し、RTで60分間インキュベートします。次に、300 μLの洗浄液でプレート5倍洗います。
  5. 酵素共役抗体を各ウェルに50μL加えます。プレートを密封し、RTで30分間インキュベートします。その後、プレート5xを300μLの洗浄液で洗浄する。
  6. TMB基板ソリューションの100 μLを各ウェルに追加します。プレートを密封し、暗闇の中で15分間RTでインキュベートします。
  7. シールフィルムを取り外し、各ウェルに100 μLの停止溶液を追加します。450 nmで光度計でODを読み取ります。標準曲線データをトレンドラインとして適合させ、サンプルの濃度を計算します。

12. CTADプラズマからのβ-トロンボグロブリンの測定

  1. CTADプラズマを水浴中で37°Cで解凍します。
  2. メーカーの指示に従ってβ-トロンボグロブリン(β-TG)ELISAキットを使用してください:β-TGコントロールとβ-TG標準を再構築し、蒸留されたH2Oを使用して洗浄液を希釈し、提供されたリン酸バッファーを使用してPOD共役抗体を再構築します。テストを開始する前に、すべての試薬とマイクロタイタープレートをRTに30分間放置してください。
  3. 標準曲線と制御は、提供されたリン酸バッファーを使用してメーカーの指示に従って準備します。CTADプラズマサンプルを1:21に希釈します。
  4. 200 μL のリン酸バッファー(ブランク)、β-TG 標準、β-TG コントロール(高濃度および低濃度)、希釈された血漿サンプルをウェルプレートに重複させます。プレートを密封し、RTで60分間インキュベートし、その後、300 μLの洗浄液でプレートを5倍洗います。
  5. 各ウェルに酵素共役抗体を200μL加えます。プレートを密封し、RTで60分間インキュベートし、その後、300 μLの洗浄液でプレートを5倍洗います。
  6. TMB基板ソリューションの200 μLを各ウェルに追加します。プレートを密封し、暗闇の中で5分間RTでインキュベートします。シールフィルムを取り外し、各ウェルに1M硫酸(H2SO4)の50μLを加えて反応を停止します。
  7. プレートを15~60分間放置し、450 nmのフォトメーターでODを読み取ります。標準曲線データをトレンドラインとして適合させ、サンプルの濃度を計算します。

13. 走査型電子顕微鏡のサンプル調製

  1. 鉗子を使用してチューブからインプラントを取り出し、インプラントを0.9%NaCl溶液3xに浸して短時間すすいで下さい。
  2. グルタルアルデヒド溶液(リン酸緩衝生理食塩水中2%グルタルアルデヒド[CA2+/Mg2+なしのPBS緩衝液]を4°Cで一晩保存する。
  3. 次に、10分間PBSバッファーにインプラントをインキュベートし、それぞれ10分間の濃度を上げるとエタノール中でインキュベートしてサンプルを脱水します:40%、50%、60%、70%、80%、90%、96%、および100%。脱水サンプルを100%エタノールに保存して、さらに分析します。
  4. 走査型電子顕微鏡(SEM)の直前に乾燥装置または文献10の指示に従って臨界点乾燥を行う。

14. 走査型電子顕微鏡

  1. 乾燥したインプラントを走査顕微鏡用のサンプルキャリアに取り付け、サンプルを金色のパラジウムでスパッタします。
  2. スパッタリングされたインプラントをサンプルチャンバーに導入します。代表的な表面と細胞接着を持つ領域の100、500-、1,000倍、2,500倍の倍率で写真を撮ります。

結果

簡単に要約すると、ヒト全血をヘパリンを積んだモノベットで採取し、細胞数のベースラインレベルと血漿血漿血化適合マーカーを評価するために使用した。

続いて、神経血管インプラント試料を含むチューブを充填し、蠕動ポンプを用いて150mL/minで60分間、37°Cで血液を透過させた。再び、細胞数を全群で分析し、ELISA分析用に血漿サンプルを調製した(?...

ディスカッション

提示された議定書は人間の血流を模倣するせん断流モデルのISO 10993-4に従って血通しのインプラントのヘモ適合性テストのための包括的で信頼できる方法を記述する。この研究は、レーザーカット神経血管インプラントのテストに基づいていますが、様々なサンプルで行うことができます。この方法により、血球数、いくつかの血性適合マーカーの有病率、および血球接触後のデバイス表面?...

開示事項

著者らは開示するものは何もない。

謝辞

走査型電子顕微鏡の性能については、大学病院テュービンゲンの医学材料科学技術部門のエルンスト・シュヴァイツァーに感謝します。研究は、国家持続可能性プログラムII(プロジェクトBIOCEV-FAR LQ1604)内のCRの教育・青少年・スポーツ省とチェコ科学財団プロジェクト第18-01163Sによって支援されました。

資料

NameCompanyCatalog NumberComments
aqua ad iniectabiliaFresenius-Kabi, Bad-Homburg, Germany1088813
beta-TG ELISADiagnostica Stago, Duesseldorf, Germany00950
Centrifuge Rotana 460 RAndreas Hettich, Tuttlingen, Germany-
Citrat monovettes (1.4 mL)Sarstedt, Nümbrecht, Germany6,16,68,001
CTAD monovettes (2.7 mL)BD Biosciences, Heidelberg, Germany367562
EDTA monovettes (1.2 mL)Sarstedt, Nümbrecht, Germany6,16,62,001
Ethanol p.A. (1000 mL)AppliChem, Darmstadt, Germany1,31,08,61,611
Glutaraldehyde (25 % in water)SERVA Electrophoresis, Heidelberg, Germany23114.01
Heparin coating for tubesEnsion, Pittsburgh, USA-
Heparin-Natrium (25.000 IE/ 5 mL)LEO Pharma, Neu-Isenburg, GermanyPZN 15261203
Multiplate Reader Mithras LB 940Berthold, Bad Wildbad, Germany-
NaCl 0,9%Fresenius-Kabi, Bad-Homburg, Germany1312813
Neutral monovettes (9 mL)Sarstedt, Nümbrecht, Germany2,10,63,001
PBS buffer (w/o Ca2+/Mg2+)Thermo Fisher Scientific, Darmstadt, Germany70011044
Peristaltic pump ISM444BCole Parmer, Wertheim, Germany3475
Pipette (100 µL)Eppendorf, Wesseling-Berzdorf, Germany3124000075
Pipette (1000 µL)Eppendorf, Wesseling-Berzdorf, Germany3123000063
Plastic container (100 mL)Sarstedt, Nümbrecht, Germany7,55,62,300
PMN-Elastase ELISADemeditec Diagnostics, Kiel GermanyDEH3311
Polyvinyl chloride tubeSaint-Gobain Performance Plastics Inc., Courbevoie France-
Reaction Tubes (1.5 mL)Eppendorf, Wesseling-Berzdorf, Germany30123328
neurovascular laser-cut implantsAcandis GmbH, Pforzheim01-0011x
SC5b-9 ELISATECOmedical, Buende, GermanyA029
Scanning electron microscopeCambridge Instruments, Cambridge, UK-
Sealing tape (96 well plate)Thermo Fisher Scientific, Darmstadt, Germany15036
Syringe 10/12 mL Norm-JectHenke-Sass-Wolf, Tuttlingen, Germany10080010
TAT micro kitSiemens Healthcare, Marburg, GermanyOWMG15
Waterbath Type 1083Gesellschaft für Labortechnik, Burgwedel, Germany-

参考文献

  1. ISO. . Biological evaluation of medical devices. , (2002).
  2. Weber, M., et al. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Frontiers in Bioengineering and Biotechnology. 6, 99 (2018).
  3. Li, Y., Boraschi, D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond). 11 (3), 269-287 (2016).
  4. Cattaneo, G., et al. In vitro investigation of chemical properties and biocompatibility of neurovascular braided implants. Journal of Materials Science: Materials in Medicine. 30 (6), 67 (2019).
  5. Stang, K., et al. Hemocompatibility testing according to ISO 10993-4: discrimination between pyrogen- and device-induced hemostatic activation. Materials Science and Engineering: C Materials for Biological Applications. 42, 422-428 (2014).
  6. van Oeveren, W. Obstacles in haemocompatibility testing. Scientifica (Cairo). , 392584 (2013).
  7. Engels, G. E., Blok, S. L., van Oeveren, W. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing. Biointerphases. 11 (3), 031004 (2016).
  8. Blok, S. L., Engels, G. E., van Oeveren, W. In vitro hemocompatibility testing: The importance of fresh blood. Biointerphases. 11 (2), 029802 (2016).
  9. Kaplan, O., et al. Low-thrombogenic fibrin-heparin coating promotes in vitro endothelialization. Journal of Biomedical Materials Research Part A. 105 (11), 2995-3005 (2017).
  10. . SEM Imaging of Biological Samples Available from: https://www.jove.com/science-education/10492/sem-imaging-of-biological-samples (2019)
  11. Mohan, C. C., Chennazhi, K. P., Menon, D. In vitro hemocompatibility and vascular endothelial cell functionality on titania nanostructures under static and dynamic conditions for improved coronary stenting applications. Acta Biomaterialia. 9 (12), 9568-9577 (2013).
  12. Streller, U., Sperling, C., Hubner, J., Hanke, R., Werner, C. Design and evaluation of novel blood incubation systems for in vitro hemocompatibility assessment of planar solid surfaces. The Journal of Biomedical Materials Research Part B: Applied Biomaterials. 66 (1), 379-390 (2003).
  13. Sanak, M., Jakieła, B., Węgrzyn, W. Assessment of hemocompatibility of materials with arterial blood flow by platelet functional tests. Bulletin of the Polish Academy of Sciences: Technical Sciences. 58 (2), 317-322 (2010).
  14. Krajewski, S., et al. Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood. Acta Biomaterialia. 9 (7), 7460-7468 (2013).
  15. Podias, A., Groth, T., Missirlis, Y. The effect of shear rate on the adhesion/activation of human platelets in flow through a closed-loop polymeric tubular system. Journal of Biomaterials Science, Polymer Edition. 6 (5), 399-410 (1994).
  16. Van Kruchten, R., Cosemans, J. M., Heemskerk, J. W. Measurement of whole blood thrombus formation using parallel-plate flow chambers-a practical guide. Platelets. 23 (3), 229-242 (2012).
  17. Müller, M., Krolitzki, B., Glasmacher, B. Dynamic in vitro hemocompatibility testing-improving the signal to noise ratio. Biomedical Engineering/Biomedizinische Technik. 57, 549-552 (2012).
  18. Ritz-Timme, S., Eckelt, N., Schmidtke, E., Thomsen, H. Genesis and diagnostic value of leukocyte and platelet accumulations around "air bubbles" in blood after venous air embolism. International Journal of Legal Medicine. 111 (1), 22-26 (1998).
  19. Miller, R., et al. Characterisation of the initial period of protein adsorption by dynamic surface tension measurements using different drop techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 131 (1), 225-230 (1998).
  20. van Oeveren, W., Tielliu, I. F., de Hart, J. Comparison of modified chandler, roller pump, and ball valve circulation models for in vitro testing in high blood flow conditions: application in thrombogenicity testing of different materials for vascular applications. International Journal of Biomaterials. , 673163 (2012).
  21. Krajewski, S., et al. Preclinical evaluation of the thrombogenicity and endothelialization of bare metal and surface-coated neurovascular stents. AJNR American Journal of Neuroradiology. 36 (1), 133-139 (2015).
  22. Monnink, S. H., et al. Silicon-carbide coated coronary stents have low platelet and leukocyte adhesion during platelet activation. Journal of Investigative Medicine. 47 (6), 304-310 (1999).
  23. Amoroso, G., van Boven, A. J., Volkers, C., Crijns, H. J., van Oeveren, W. Multilink stent promotes less platelet and leukocyte adhesion than a traditional stainless steel stent: an in vitro experimental study. Journal of Investigative Medicine. 49 (3), 265-272 (2001).
  24. Mulvihill, J., Crost, T., Renaux, J. L., Cazenave, J. P. Evaluation of haemodialysis membrane biocompatibility by parallel assessment in an ex vivo model in healthy volunteers. Nephrology Dialysis Transplantation. 12 (9), 1968-1973 (1997).
  25. Nordling, S., Nilsson, B., Magnusson, P. U. A novel in vitro model for studying the interactions between human whole blood and endothelium. Journal of Visualized Experiments. (93), e52112 (2014).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

157 ISO 10993 4

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved