Method Article
このプロトコルは、表現型マイクロアレイ(PM)技術プラットフォームを使用して、緑の微細藻類 であるクラミドモナス・レインハルトイ の代謝要件を定義し、既存の代謝ネットワークモデルを改良することを実証しています。
代謝モデルは、生物の利用可能なゲノム注釈に基づいて再構築され、システムレベルで代謝プロセスを研究するための予測ツールを提供します。ゲノムスケールの代謝モデルには、実験的に未確認の反応と同様にギャップが含まれる可能性があります。新たに単離された微細藻類種の再構築モデルは、通常、そのような分離株の代謝に利用可能なまばらな生化学的証拠があるので、これらのギャップによる弱点をもたらす。表現型マイクロアレイ(PM)技術は、幅広いエントリ代謝産物に応答して細胞代謝活動を機能的に決定する効果的で高スループットな方法です。高スループットの表現型アッセイと代謝モデリングを組み合わせることで、ゲノム証拠をサポートおよび拡張するための生化学的証拠を提供することで、既存の代謝ネットワークモデルを迅速に再構築または最適化することができます。本研究では、緑色の微細藻類モデル種クラミドマス・reinhardtiiを例に用いた微細藻類研究のためのPMアッセイの使用を示す。PMが得た254以上の反応の実験的証拠は、ゲノムスケールC.reinhardtii代謝ネットワークモデルi RC1080を約25%拡大し、精製するために使用された。ここで作成されたプロトコルは、既知の微細藻類変異体および新しい分離株を含む他の微細藻類の代謝を機能的にプロファイリングするための基礎として使用することができる。
標的代謝産物の増強と安定した生産のために藻類代謝を最適化するには、代謝ネットワークのシステムレベルの解析を通じた複雑な代謝工学戦略の開発が必要です。代謝ネットワークモデルは、最適化戦略1、2、3、4の迅速な開発のための合理的な設計を導くことができます。約160種の微細種が5種配列化されているが、我々の知る限りでは、4,6,7の藻類代謝モデルは44種類しか存在しません。ゲノム情報の実験検証のための高スループット代謝型フェノミカルデータの取得が困難なため、高品質ネットワークモデルの再構築は藻類ゲノムシーケンシングの急速な発展に遅れをとっています。
C.reinhardtiiは藻類ベースの研究のための魅力的なモデルシステムです。この種は、光自己または不均一に成長することができ、基礎および応用研究のモデル生物として広く使用されています。そのゲノム配列は2007年8月に発表され、ゲノムスケールの代謝モデルは9、10、11種のために再構築された。C.reinhardtii(i RC1080)のゲノムスケールモデルをChangらによって再構築した。 10ゲノムおよび文献の証拠に基づく(〜250の情報源を伴う)。それは2,190反応10と1,706代謝物を有する;しかし、モデルの完全性は、当時公開された公開された実験証拠を超えて検証できませんでした。
表現型マイクロアレイ(PM)技術は、組織培養細胞だけでなく、ヘテロ栄養微生物の代謝プロファイリング情報を提供できるハイスループットプラットフォームです。特に、クロミドモナス・レインハルト12に対して最初に報告されたように、クロロイドニウム13およびクロレラ14の種に対して最初に報告されたように、微細藻類における表現型間の知識ギャップに対処するために使用することができる。何千もの代謝産物、シグナル伝達分子、浸透分子、およびエフェクター分子に対する細胞応答を研究することにより、PMアッセイは機能的代謝プロファイリングを提供し、機能、代謝、および環境感受性15、16、17に関する洞察を提供することができる。具体的には、PMアッセイは、各ウェルに含まれる異なる栄養素、代謝物、または浸透量が異なる96ウェルマイクロプレートにおける細胞代謝産物の利用を検出する。また、抗生物質やホルモンなどの生理活性分子をアッセイすることもできる。テトラゾリウム系酸化還元色素のNADH還元による色の強度によって決定されるように、基質の代謝利用率は細胞呼吸15、16、17の観点から評価される。96ウェルマイクロプレートでの実験は、表現型マイクロアレイ装置(PMI)プラットフォームを使用して、時間の経過とともに自動的に監視および決定することができます。20個の96ウェルマイクロプレートは、炭素、窒素、硫黄、リン源を利用する細胞表現型を研究するための共通のセット代謝産物を表すように設計されており、異なる浸透/イオンおよびpH効果を有する。PM技術は、微生物15、16、17、18の既存のゲノムスケール代謝モデルの数を更新し、アップグレードするために正常に使用されています。
ここに示すプロトコルとデータは、Chaiboonchoeらによって以前に公開された作品に基づいています 。12本発表の研究では、微小藻類の代謝表現型を特徴付け 、C.reinhardtii の既存の藻類代謝モデルを拡大し、新しい代謝モデルの再構築を導くために、PMアッセイ法の使用について詳しく説明した。
1. 表現型マイクロアレイ実験
2. データ分析
3. 新しい代謝産物に関連する反応と遺伝子の同定
4. モデルの改良と評価
モデル藻体クラミドモナス・レイアルドティの表現型マイクロアレイスクリーニング
PMアッセイは、最小限の媒体で炭素、窒素、硫黄、リンの様々な供給源を利用する藻類の能力をテストします。本手法では、PMアッセイを用いて炭素と窒素の代謝を同定する方法を示した。炭素および窒素利用速度論をマイクロプレートリーダーで測定した。データはPMIソフトウェアを用いて分析した。選択したPMアッセイプレート(PM01およびPM03)の概略運動量を 図1に示す。「xyプロット」は、96ウェルプレートのアッセイのためにプロットされた時間の経過に関する呼吸測定を表示し、y軸とx軸はそれぞれ生の測定値と時間の値を表します。データをヒートマップパターンに変換し、運動データの組立を比較的解析した。
PMデータを用いたゲノム規模の代謝ネットワークの精製パイプライン(図2)は、高スループットPMアッセイと、ゲノム検索によって提供される実験証拠の統合が代謝ネットワークモデルを拡大できることを示している。
PM01-04およびPM10プレートから得られたPMデータの再現性を判定するために、線形回帰を分析し、互いに対して2つの独立した反復実験からのデータをプロットした(図3)。図3は、データの大部分が45°ラインに落ちるにつれてほぼ類似しており、外れ値はごくわずかであり、測定係数R2は0.9であったことを示しています。藻類の実験の一貫性と再現性は、このプロットによって検証されます。
新しい代謝物の同定
PMアッセイは7つのプレートで662の代謝産物を同定した。PM01-PM04およびPM06-PM08は、ガスクロマトグラフィー時間-飛行時間(GC-TOF)が77の代謝産物32を同定した(図4)。これら2つの集合を iRC1080で説明した1068の代謝産物と比較すると、3つのセットの間で重なった代謝物は6つだけで 、149個はiRC1080とPMの間で重なった。この結果は、代謝プロファイリングプラットフォームが新しい代謝情報の重要な供給源となり得ことを示しています。
酢酸は、背景信号を減算した後に支持炭素としてプレートPM01で検出された唯一の炭素源であった。この知見は、文献33と一致し、PMアッセイの特異性を示す。PMアッセイは 、C.reinhardtii が成長のために利用できる新しい硫黄、リン、および窒素源を明らかにした。硫黄代謝物は硫酸塩、チオ硫酸、テトラチオン酸、DL-リポアミドであった。リン源はチオリン酸、ジチオリン酸、D-3-ホスホグリセリン酸、システアミン-S-リン酸であった。窒素源代謝物は、Lアミノ酸とDアミノ酸であり、あまり一般的でないアミノ酸を含む。L-ホモセリン、L-ピログルタミン、メチルアミン、エチルアミン、エタノールアミン、およびD、L-α-アミノ酪酸、および108ジペプチドおよび5個のトリペプチド(表 1)新たに同定された128個の代謝産物はすべて、KEGGおよびMetaCycで、関連する反応、EC番号、および経路について検索された。
新しい128の代謝物は49の一意のEC番号に関連付けられていた。このうち、15個のICが、5つの情報源を用いてゲノム証拠にリンクされていた。フィトゾームバージョン10.0.234 JGIバージョン435、AUGUSTUS5.0、および5.210のマニチャイクルらからの注釈36とKEGG13.ゲノムエビデンスのない代謝産物は、ユニバーサルタンパク質資源のウェブサイト(UniProt、http://www.uniprot.org/)37,38に入力され、そこで他の生物に関連する配列が見つかった。C.reinhardtiiの相同配列は、有意なアライメントを生み出した配列のみを考慮してNCBIウェブサイトから位置特異的反復BLAST(PSI-BLAST、https://blast.ncbi.nlm.nih.gov/Blast.cgi)を実行することによって同定された(E値<0.005)。
モデルの絞り込み
新しい128代謝産物に関連する反応は、そのコードされた遺伝子と共に 、iRC1080モデルに追加され、ネットワークを拡大した。得られたモデル iBD1106は、2,444反応、1,959個の代謝産物、および1,106遺伝子を占める(表 2)。新たに254個の反応を加えたのは、20個のアミノ酸酸化反応、108個のジペプチド加水分解反応、5つのトリペプチド加水分解反応、および120個の輸送反応で、4つの遺伝子(Cre02.g096350.t1.3、au.g14655_t1、e_gwW.1.243.1、Cre12.g48635.t.3.t
合計113の追加の新しい反応は、ジペプチドと三ペプチドの加水分解を占めています。ジペプチドと三ペプチドの加水分解は、2つの遺伝子、1つは、ジペプチド(Cre02.g078650.t1.3)と3ペプチド用(Cre16.g675350.t1.3)に関連付けられている。
リンの供給源に関しては、システアミンS-リン酸のシステアミンおよびリン酸への加水分解に対する反応を、その遺伝子JLM_162926に関連付けて添加した。
WoLF PSORTツール39(http://www.genscript.com/psort/wolf_psort.html)とガムサリらによって報告された結果。35は、新しい反応が行われる細胞コンパートメントの仕様を得るために適用された。新しい反応に関連するタンパク質配列を分析することにより、WoLF PSORTは細胞コンパートメントとして細胞質を反応させると予測した。
生まれた代謝モデルは、生化学的情報が不完全な場合にギャップを含む可能性がある。このような場合は、gapFind、COBRA コマンドが使用されます。ルート ギャップを一覧表示し、新しいモデルで新しいギャップの導入を識別できるようにします。代謝モデルでは生成できない代謝産物を、根隙40,41と呼びます。ルートギャップを分析すると、iRC1080とiBD1106モデルの両方に同じ91ギャップが含まれていることが示されました。これは、新しい代謝産物とそれに関連する反応を追加しても、追加の根間ギャップが導入されないことを示しています。原発性の根間間代謝物には、表現型アッセイでは取り上げられなかった輸送機構や生産機構がないため、このプロトコルで使用される表現型法は根隙を埋めずに行う必要がある。フラックスバランス解析は、光と暗い条件下でiBD1106の代謝挙動をテストするために行った;(酢酸塩なし)と(酢酸塩を含む)をそれぞれ、それぞれ。このアルゴリズムは、目的関数(バイオマス成長)のためのバイオマス前駆体反応を最大化します。各代謝産物が設定された目的関数に関与することを評価するために、全ての代謝物に対する「影の価格」を計算した。代謝物の流束変化に関する目的関数の変化は、代謝産物30,42の影の価格を定義する。代謝産物が「過剰」であるか、または「制限」している目的関数の指標は、例えばバイオマス生産の影の価格分析によって決定することができる。負または正の影の価格値は、追加されると、目的関数を減少または増加させる代謝物を明らかにします。影の価格のゼロ値は、目的関数に影響を与えない代謝物を明らかにします。図5のiBD1106とiRC1080の影の価格の比較は、ほとんどの代謝産物にとって、大きな変化は観察されないことを示している。しかし、それぞれ明暗の成長条件下で105と70のケースに違いが見られます。表4にそのような代謝物の例が含まれる。
図1: C.reinhardtiiのフェドミピックマイクロアレイプロファイリングPM01の呼吸XYプロットとレベルプロット(炭素源;A,C)およびPM03(窒素源;B,D)アッセイプレートが示されている。図は8x12配列で、各セルはウェルプレートを表し、したがって、所定の代謝物または成長環境を表します。各セルまたはウェル表現内では、曲線は時間(x軸)の関数として、減少(y軸)による色素変換を表します。CC-503およびブランクウェルからのPM呼吸曲線は各セルに示され、色で示されます(色は白いウェルを表し、紫色はCC-503を表します)。レベルプロットは、各呼吸曲線を、時間の経過とともに色を変化させる(または変化しない)細い水平線として表します。ヒートマップの色の変化は、淡黄色(ほとんどまたは全く呼吸が行われなかった)から濃いオレンジまたは茶色(大幅な呼吸が行われている)に変化します。C.reinhardtii(CC-503)およびブランクプレートで利用される代謝物が示されている。この図は、チャイブーンチョーらによる以前に出版された作品からである。12この図の大きなバージョンを表示するには、ここをクリックしてください。
図2PMデータを用いたゲノムスケール代謝ネットワーク改良パイプライン PMアッセイで陽性反応を示す新しい化合物の後、その酵素委員会数(EC)、反応、経路は、KEGGおよびMetaCycなどの利用可能なデータベースから同定されます。ゲノム証拠は、その後、利用可能な場合にゲノムおよび注釈リソースから抽出され、遺伝子型と表現型の間のリンクを構成する。直接ゲノム証拠が利用できない場合、タンパク質配列はEC番号から同定され、遺伝子証拠はPSI-Blastを介して同定される。再構築された代謝ネットワークは、新たに同定された化合物に基づいて洗練されますが、関連するデータベースを使用してタンパク質ドメインを照会する品質管理ステップの後にのみ行われます。この図は、Chaiboonchoeらによって以前に出版された作品から変更 されています。12 この図の大きなバージョンを表示するには、ここをクリックしてください。
図3:PM試験の再現性 PMI値は168時間にわたって収集され、最大PMI値は2つの反復研究のためにプロットされた。各軸は、各スタディの最大 PMI 値を表します (X 軸は 1 つの反復スタディ、y 軸は別です)。再現された値は各軸から等距離です。各ポイントは、1 つの最大値を表します。線形回帰は、スプレッドシートソフトウェアによって行われ、結果の決定係数(R2)が示されている。この図は、Chaiboonchoeらによって以前に出版された作品から変更 されています。12 この図の大きなバージョンを表示するには、ここをクリックしてください。
図4: 代謝物のベン図 ベン図は、PMプレート 、iRC1080代謝モデル、およびガスクロマトグラフィー飛行時間(GC-TOF)実験によって同定された代謝産物を列挙する。各円は、それぞれの研究方法に存在する代謝産物の総数を示します。同時に、重複する領域は、それらのメソッド間で共有される代謝産物の数を表します。 iRC1080代謝モデルには、合計1,068個のユニークな代謝産物が含まれています。GC-TOFは合計77個の代謝産物32を同定し、PMプレートを使用して同定された代謝産物は合計662個ある。この図は、チャイブーンチョーらによる以前に出版された作品から である。 12この図の大きなバージョンを表示するには、ここをクリックしてください。
図5:バイオマスの最大化のための異なる条件下でのiRC1080およびiBD1106における代謝産物の影の価格。「レーダープロット」の各円はシャドウ価格の値に対応し、プロットの中心から伸びる各線は代謝産物を示します。(A)光の成長条件下でのiRC1080およびiBD1106の影の価格と代謝挙動;(B)、暗い成長状態下でのiRC1080およびiBD1106の異なる代謝挙動。この図は、チャイブーンチョーらによる以前に出版された作品からである。12この図の大きなバージョンを表示するには、ここをクリックしてください。
生物学ケミカル | EC* | 遺伝子注釈 | PSIブラスト |
システアミン-S-リン酸 | 3.1.3.1 | JLM_1629261,2,3,4 | |
テトラチオネート | 1.8.2.2 | 重要でない E 値 | |
1.8.5.2 | 重要でない E 値 | ||
D-アラニン | 1.4.1.1 | XP_001700222.1 | |
1.5.1.22 | 失敗した手動 QC | ||
2.1.2.7 | 重要でない E 値 | ||
1.4.3.3 | Cre02.g096350.t1.35 | ||
2.3.2.10 | 重要でない E 値 | ||
2.3.2.14 | 重要でない E 値 | ||
2.3.2.16 | 重要でない E 値 | ||
2.3.2.17 | 重要でない E 値 | ||
2.3.2.18 | 重要でない E 値 | ||
2.6.1.21 | 失敗した手動 QC | ||
3.4.13.22 | XP_001698572.1, XP_001693532.1, XP_001701890.1, XP_001700930.1 | ||
3.4.16.4 | Chlre2_kg.scaffold_ 140000391,2,3 | ||
3.4.17.8 | 失敗した手動 QC | ||
3.4.17.13 | 重要でない E 値 | ||
3.4.17.14 | 重要でない E 値 | ||
4.5.1.2 | 重要でない E 値 | ||
6.1.1.13 | 失敗した手動 QC | ||
6.1.2.1 | 失敗した手動 QC | ||
6.3.2.4 | au.g14655_t11、2、3 | ||
6.3.2.10 | 失敗した手動 QC | ||
6.3.2.16 | 重要でない E 値 | ||
6.3.2.35 | 重要でない E 値 | ||
D-アスパラギン | 1.4.5.1 | 重要でない E 値 | |
1.4.3.3 | Cre02.g096350.t1.35 | ||
3.1.1.96 | 重要でない E 値 | ||
2.3.1.36 | 重要でない E 値 | ||
1.4.99.1 | XP_001692123.1 | ||
3.5.1.77 | e_gwW.1.243.11,2 | ||
3.5.1.81 | 重要でない E 値 | ||
5.1.1.10 | 失敗した手動 QC | ||
D-アスパラギン酸 | 6.3.1.12 | 重要でない E 値 | |
1.4.3.3 | Cre02.g096350.t1.35 | ||
D-グルタミン酸 | 1.4.3.7 | 重要でない E 値 | |
1.4.3.3 | 重要でない E 値 | ||
D-リジン | 5.4.3.4 | 重要でない E 値 | |
1.4.3.3 | Cre02.g096350.t1.35 | ||
6.3.2.37 | 失敗した手動 QC | ||
D-セリン | 2.7.11.8 | 重要でない E 値 | |
2.7.11.17 | Cre12.g486350.t1.31,2,3,4 | ||
3.4.21.78 | 失敗した手動 QC | ||
3.4.21.104 | 失敗した手動 QC | ||
4.3.1.18 | g6244.t14 | 失敗した手動 QC | |
6.3.2.35 | 重要でない E 値 | ||
6.3.3.5 | 重要でない E 値 | ||
1.4.3.3 | Cre02.g096350.t1.35 | ||
D-ヴァリン | 1.21.3.1 | 失敗した手動 QC | |
6.3.2.26 | 失敗した手動 QC | ||
1.4.3.3 | Cre02.g096350.t1.35 | ||
L-パイログルタミン酸 | |||
チオリン酸 | |||
ジチオリン酸 | |||
エチルアミン | 6.3.1.6 | ||
D,L-a-アミノブチル酸 | 2.1.1.49 | 重要でない E 値 | |
1.4.3.3 | Cre02.g096350.t1.35 | ||
ジペプチド | 3.4.13.18 | Cre02.g078650.t1.31 | |
トリペプチド | 3.4.11.4 | Cre16.g675350.t1.31 |
表1:同定された陽性基質利用代謝産物(C、P、S、N)のリストは、i RC1080代謝モデルに存在しない。 ※遺伝子が同定されなかった場合は反応は含まれません。 1植物ゾームバージョン10.0.2 (http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Creinhardtii)。 2JGI バージョン 4 35. 3アウグストゥスバージョン510. 4ケッグ(http://www.genome.jp/kegg/kegg1.html)。 5JGI バージョン 3.136. この表は、チャイブーンチョーらによって以前に出版された作品からです。12
モデル | 反応 | 代謝 産物 | 遺伝子 |
iRC1080 | 2,191 | 1,706 | 1,086 |
iBD1106 | 2,445 | 1,959 | 1,106 |
表2:iRC1080とiBD1106の内容. この表は、チャイブーンチョーらによって以前に出版された作品からです。12
反応のカテゴリまたはクラス | 反応数 |
アミノ酸 | 20 |
ジペプチド | 108 |
トリペプチド | 5 |
輸送反応 | 120 |
表3: iBD1106における新たな反応の概要この表は、チャイブーンチョーらによって以前に出版された作品からです。12
成長条件 | 代謝 産物 | 名前 | iRC1080 | iBD1106 | |
4r5au | 4-(1-D-リビチルアミノ)-5-アミノウラシル | 0 | 0.168 | ||
5aprbu | 5-アミノ-6-(5'-リン酸化アミノ)ウラシル | -0.009 | 0.158 | ||
光 | pa1819Z18111Z | 1-(9Z)-オクタデセノイル,2-(11Z)-オクタデセノイル-sn-グリセロール3-リン酸 | -0.009 | -0.65 | |
暗い | 4abut | 4-アミノブタノエート | 0.18 | -0.05 |
表4: iRC1080およびiBD1106の重要な影の価格の例。この表は、チャイブーンチョーらによって以前に出版された作品からです。12
緑色の微細藻類 C.reinhardtiiの代謝表現型は、高スループットPMアッセイプレートおよび未改変PMIを用いてここで説明した。このアッセイは、合計190個の炭素源(PM01およびPM02)、95個の窒素源(PM03)、59リン源、35個の硫黄源(PM04)、ペプチド窒素源(PM06-08)に対して利用された。陽性呼吸は148の栄養素(C源利用のための1つの陽性アッセイ、各S源およびP源利用のための4つの肯定的なアッセイ、およびN源利用のための139陽性アッセイ)に対して観察された。これらの各ソースをテストする関連するPMマイクロプレートに適用する場合、メディアの基質または栄養素(炭素、窒素、リン、または硫黄)成分を定義された培地に添加しないでください。
ここに示す方法は、既存の代謝ネットワークモデルを拡張したり、新しいモデルの再構築を指示するために使用することができる代謝微細藻類の表型を特徴付けるために有効である。また、ほとんどの微細藻類の栄養要件が知られていないので、このプラットフォームはこれらを迅速に定義するために使用することができる。ネルソン ら43は、これらの方法を適用して、微細藻類 クロロイドウム sp.UTEX 3007の成長を支える新しい化合物を同定し、得られた情報を使用して、クラミドマとは異なり、40種類の炭素源を含む種の侵入代謝物を定義した。
微細藻類のプロファイリングのためのPMの大きな制限の1つは、PMIがインキュベーションチャンバーに照明を持たないことであり、微細藻類は不均栄養代謝を行うことができる必要がある。光の欠如は、代謝フラックスを計算するために光を組み込むモデルの解釈に影響を与える可能性があります。協調機能を持つ遺伝子ペアは、代謝ネットワークハブを構成するために共進化しており、光合成ネットワークハブと非光合成ネットワークハブの区別を44にすることができる。一般に、光合成ネットワークハブ(モデル内の高度に接続されたノード)は、ヘテロトロピケートモデルから除外されます。ミキソトロピケート種におけるモデリングの異種のモデリングは、光によって駆動される反応を省略し、条件間のエネルギーバランスの違いを考慮する必要があります。従って、クラミドモラス代謝モデリング6,45における光依存性および光非依存代謝のモデリングが標準的な実践である。
トレブキシオフィテスのようないくつかの緑色の微細藻類は、成長のために様々な炭素分子を同化することが知られており、これは地衣類46のメンバーとしての長い進化の歴史から生じたと考えられている。クラミドメナスのようなクロロファイトは、成長に酢酸を使用することができるが、非常に長鎖多価不飽和脂肪酸(VLC-PUFAs)を商業的に生産する可能性で知られる褐海の微細藻類チソクリシスルテアは、酢酸を使用することはできないが、成長にグリセロールを使用することができる47。100 g l-1以上の乾電池重量のバイオマス濃度は、供給バッチモード48で有機炭素源を最適化してクロレラで達成されています。また、クロレリャヴルガリスへの糖の添加は、CO2の隔離を高めることができ、したがって、光合成成長49中に付加的な利益を提供する。ほとんどの異栄養性微細藻類もミキソトロフィカルに成長することができるが、クロロファイトクロモクロリスゾフィンギエンシスは、糖50を添加すると光合成を遮断することが示されている。
分裂バチラリオフィタに属する珪藻類は、植物プランクトンの主要なグループである。ほとんどの珪藻は光自己対光的にしか成長できないが、それらのいくつかは、ミキソトロフィックまたは異様51を培養することができる。例えば、グリセロールは、モデル種であるフェオダクチラムトリコルヌトゥタム52を含む一部の珪藻類においてCO2が存在しない場合の光の成長を支えることを発見した。また、ニッツキアリニアのようないくつかの底生珪藻は、暗い53の炭水化物に成長することができます。PMアッセイは、細胞が不均一に成長できるように適切な有機炭素源を補うことによって、糖尿病および他の藻類群にPMアッセイを拡張する可能性があり、かつ、必要最小限の光供給を提供する義務的な自己栄養性微細藻類にもミキソトロフィー戦略を使用する可能性がある。
データの再現性を評価するために、全てのプレートに対して重複アッセイを行うことを強く推奨します。アッセイは、負のコントロールとそれぞれのブランクウェルからの減算後に、吸光度(PMI値)が正の場合にのみ正であると考えられる。この説明は、試験化合物の存在下で、色素の培地との不生物反応の反映である。
著者らは開示するものは何もない。
この研究に対する主要な支援は、ニューヨーク大学アブダビ研究所助成金(73 71210 CGSB9)とNYUアブダビ教員研究基金(AD060)の下でタムキーンが資金を提供したNYUADゲノミクス・システム生物学センター(CGSB)によって提供されました。W.F.は浙江大学の百人タレントプログラムによってさらにサポートされました。私たちは、ビデオを記録する上で助けを求めてAshish Jaiswalに感謝します。代謝表現型データを生成してくれたホンカイに感謝します。
Name | Company | Catalog Number | Comments |
Ampicillin | VWR | 97062-796 | |
Biolog assay plates [ PM01-08] | Biolog, Hayward, CA, USA | ||
Biolog Omnilog Instrument | Biolog, Hayward, CA, USA | ||
Chlamydomonas reinhardtii strain CC-503 | Chlamydomonas Resource Center at the University of Minnesota, USA. | Regents of the University of Minnesota | |
Kanamycin | VWR | 0408-EU-10G | |
Tetrazolium Violet Dye “D” | Biolog, Hayward, CA, USA | ||
Timentin | GlaxoSmithKline Australia Pty Ltd | 42010012-2 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved