JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、「A DishのSCar様組織」またはSCADと呼ばれる皮膚筋膜外植体の生成を記述する。このモデルは、瘢痕形成中の単一線維芽細胞の前例のない視覚化を可能にする。

要約

深部組織創傷の封入に対する哺乳類の世界的な応答は、特殊な筋膜線維芽細胞によって媒介される瘢痕形成および組織収縮によるものである。瘢痕形成および創傷治癒障害の臨床的意義にもかかわらず、創傷治癒における筋膜線維芽細胞動態の我々の理解は、皮膚創傷などの複雑な環境における線維芽細胞振り付けおよび動態の直接可視化を可能にする関連アッセイの欠如のために大雑把である。この論文は、皮膚創傷の複雑な環境をエミュレートするSCADまたは「A Dish内のSCar様組織」を使用して 、その場で 皮膚瘢痕を生成するためのプロトコルを提示する。このアッセイでは、2mmの全厚皮膚を切除し、培地中で5日間逆さまに培養し、その間に瘢痕および皮膚拘縮が均一に発達する。この方法論は、線維芽細胞系譜特異的トランスジェニックマウスモデルと相まって、創傷修復プロセス全体にわたる個々の線維芽細胞系統の視覚化を可能にする。全体として、このプロトコルは、創傷修復の基本的なプロセスとメカニズムを理解する上で研究者を支援し、創傷治癒結果に対するモジュレーターの効果を直接探求する。

概要

創傷治癒は、破られた創傷の修復のプロセスである。無脊椎動物の組織損傷は、部分的または完全な再生をもたらす。対照的に、哺乳動物は、損傷部位123を永久に変形させるマトリックス繊維の緻密なプラグで創傷を迅速に密封するように調整されたプロセスである瘢痕化によって深い傷害に応答する。哺乳類における大きな皮膚火傷または深く開いた創傷は、肥厚性またはケロイド瘢痕などの病理学的表現型をもたらす4,5。これらの熱狂的な傷跡は、臨床および世界の医療システムに多大な負担を引き起こします。米国だけでも、瘢痕管理には年間約100億ドルの費用がかかります6,7。したがって、瘢痕形成に関与する基礎プロセスおよびメカニズムをよりよく理解するために、関連する方法論の開発が必要である。

近年、マウスにおける広範囲の研究により、特定の皮膚位置におけるそれらの起源に基づいて、別個の機能的効力を有する不均一な線維芽細胞集団が明らかになった8910。背部皮膚において、Rinkevich et al., 2015は、EPF(Engrailed 陽性線維芽細胞)と呼ばれるEngrailed-1(En1)の初期胚性発現を有する特定の線維芽細胞集団が、創傷時の皮膚瘢痕化に寄与することを同定した。逆に、エングレイル発現の病歴のない別の線維芽細胞系統、エングレイルドネガティブ線維芽細胞(ENF)は、瘢痕形成8に寄与しない。R26 mTmG(En1Cre x R26mTmG)などの蛍光レポーターマウス系統に交差したCre駆動トランスジェニックマウス系統を用いたこれらのEn1系統の運命マッピングは、EPFおよびENF集団の可視化を可能にする。

数日間にわたるインビボでの線維芽細胞移動を研究することは、倫理的および技術的制約によって制限される。さらに、化合物、ウイルスおよび中和抗体ライブラリーをスクリーニングして、瘢痕化に関与する経路を調節することは技術的に困難である。以前に使用されていたインビトロまたはエキソビボモデルは、本物の皮膚微小環境における線維芽細胞移動および瘢痕形成、瘢痕発生における均一性、ならびにインビボ皮膚環境をエミュレートする組織の複雑さを視覚化する能力を欠いている1112。上記の制限を克服するために、我々はSCAD(A Dish中のSCar様組織)13,14と呼ばれるエクスビボ瘢痕化アッセイを開発しました。この簡単なアッセイは、表皮、真皮、および皮下筋膜領域を含む2mmの全厚皮膚を切除し、血清補充DMSO培地中で最大5日間培養することによって行うことができる。SCADから生成された瘢痕は、インビボ瘢痕のトランスクリプトームおよびプロテオミクスの特徴を確実に複製する。さらに、蛍光レポーターマウス系統と交配した関連するトランスジェニックマウス系統(例えば、En1マウス)から生成されたSCADは、線維芽細胞遊走ダイナミクスおよび瘢痕発生を前例のない解像度で視覚化することを可能にする。さらに、このモデルは、あらゆるハイスループットアプリケーション(例えば、化合物ライブラリー、抗体ライブラリー、またはウイルススクリーニング)に容易に適合させることができる1314。この記事では、SCADを生成するための最適化されたプロトコルと、その後のダウンストリーム処理アプリケーションを使用して、瘢痕発生における細胞およびマトリックスのダイナミクスを研究します。

プロトコル

以下に提示されるモデルは、Jiang et al., 202013に簡単に記載されているように、SCADアッセイの生成の詳細なステップバイステップの説明を提供する。SCADサンプル調製は、国際およびオーバーバイエルン州政府のガイドラインに従って動物を犠牲にした後に実施した。動物はミュンヘンのヘルムホルツセンターの動物施設で飼育されました。部屋は12時間の光サイクルで最適な湿度と一定の温度で維持されました。動物には食物と水を 自由摂取させた。

1. SCAD組織調製

  1. 生後0日目または1日目(P0またはP1)に新生児の仔を犠牲にする。
  2. 滅菌外科用メスを用いて骨格筋層まで少なくとも1.5cm×1.5cmの全厚背部背部皮膚を慎重に切除する。
  3. 滅菌湾曲した鉗子を使用して皮膚を剥がし、表在筋膜が根底にあるパンニクルス・カルノーサス筋で無傷であることを確認する。
  4. 摘出した組織を50~100mLの冷たいDMEM/F-12培地で洗浄し、汚染された血液を除去します。
  5. ハンクスのバランス塩溶液(HBSS)で一度洗って、組織と細胞の生存率を維持します。
  6. DMEM/F12培地を含む10cmのペトリ皿に皮膚を逆さま(上部に表在筋膜)置きます。
  7. 使い捨ての2mm生検パンチを用いて、全厚の丸い皮膚片を切除し、表皮まで下層のパンニクルス・カルノーサス筋で表在筋膜が無傷であることを確認し、SCAD組織を生成する。
  8. 10% FBS、1x GlutaMAX、1x MEM 非必須アミノ酸、および 1x ペニシリン/ストレプトマイシンを添加した 200 μL の DMEM/F12 完全培地 (フェノールレッドなし) を 200 μL の完全培地 DMEM/F12 を調製し、96 ウェルプレートの個々のウェルに充填します。
  9. 滅菌鉗子を使用して、個々のSCAD組織を逆さま(筋膜が上を向いて)96ウェルプレートのウェルに慎重に移し、完全に沈めます。
  10. プレートを標準条件(37°C、21%(v/v)酸素、5%(v/v)C02、および湿度95%)で維持された細胞培養インキュベーターに移す。

2. SCAD - 組織培養

  1. SCADをインキュベーター内で最大5日間培養する。
  2. 培養2日目および4日目に、培地を200μlの新鮮な予め加温したDMEM/F12完全培地と交換し、細胞および組織の生存率条件の継続を確保します。各培地交換中に処理化合物を交換してください。
    注: 組織がウェルに付着しないように、ウェルに 10 μL の培地を必ず残してください。
  3. ライブイメージング(セクション3)、組織採取および2D/3D免疫蛍光染色(セクション4)の実験用にSCADを準備します。

3. SCADのライブイメージング

  1. 2%-3%(w/v)低融点アガロース溶液をPBS中の最低30mLをガラス瓶に調製し、それを電子レンジで加熱して沸騰させる。
  2. 直ちにボトルを移し、液体アガロース溶液を40°Cの水浴中で冷却した。
  3. 筋膜/瘢痕を上向きにしてSCAD組織を35mm皿の中心に移す。
  4. パスツールピペットを用いて40°Cの液体アガロースを35mmディッシュ上にゆっくりと移すことによって、室温(RT)でSCADを埋め込む。アガロースは2分以内に重合する。
  5. 2 mL の加温済み DMEM/F12 完全培地 (フェノールレッド指示薬なし) を加えます。
  6. 37°C、21%(v/v)酸素、5%(v/v)C02、および湿度95%に設定された適切なインキュベーションシステムを備えた共焦点顕微鏡または多光子顕微鏡を使用して、0日目のSCADの最大48時間のタイムラプス画像を取得します。

4. 組織採取と2D/3D免疫蛍光染色

  1. 培地を滅菌PBSで交換することにより、関連する時点で組織を洗浄する。
  2. 滅菌鉗子を使用して、個々のSCADを500μLの2%パラホルムアルデヒドを含む1.5mL微量遠心チューブに慎重に移し、組織を4°Cで一晩固定した。
  3. PBSで組織を3回洗浄し、2D/3D免疫蛍光染色を続行します。
  4. 3D免疫蛍光染色
    1. 0.2% ゼラチン、0.5% Triton-X100、および 0.01% チメロサール (PBSGT) を添加した 500 μL の PBS を含む 1.5 mL の微量遠心チューブで RT で 24 時間インキュベートすることにより、組織を透過処理します。
    2. メーカーの指示に従って適切な量の一次抗体を調製し、SCAD組織を150μLのPBSGT溶液中でRTで24時間インキュベートする。
      注:免疫蛍光に対する最適な抗体濃度が製造業者によって報告されていない場合、様々な濃度(例えば、1:50、1:200、1:500、1:1000)を使用して、対照組織に対して事前の抗体滴定を行う必要がある。
    3. SCADをPBSで3回穏やかに洗浄し、結合していない一次抗体を除去した。
    4. 1:1000の関連するAlexa Fluor二次抗体と共に組織をPBS中でRTで一晩インキュベートする。
    5. PBSで組織を30分間穏やかに3回洗浄し、過剰の未結合二次抗体を除去した。
    6. 共焦点または多光子イメージングのために、組織を35mmのガラス底皿に移す。
      メモ:水浸漬対物レンズを使用する場合は、SCADを2%の低融点アガロースに埋め込んで組織を固定化し、画像取得中のドリフトを防ぎます。
  5. 2D免疫蛍光染色
    1. 組織をクライオモールドに移し、最適な切断温度(OCT)化合物を穏やかに充填して組織を完全に浸漬します。
    2. 組織の向きを穏やかに調整し、気泡が存在しないことを確認し、断面または垂直断面を得る。
    3. 金型をドライアイス上に 20 ~ 30 分間置き、ブロックを -80 °C で一晩インキュベートします。
    4. ブレード温度を-25°C、試料ブロック温度を-17°Cに設定します。 クライオスタットを用いて6μmのクライオセクションを作製し、接着スライド上に移し、-20°Cの冷凍庫に保管する。
    5. スライドをPBSで3回すすぎ、スライドをPBST(0.05%トゥイーンを添加したPBS)中の5%ウシ血清アルブミン(BSA)w/vで1時間インキュベートします。
    6. 150μl PGSTに適量の一次抗体を加え、4°Cで一晩インキュベートした。
      注:免疫蛍光に最適な抗体濃度が製造業者によって報告されていない場合は、さまざまな濃度(例えば、1:50、1:200、1:500、1:1000)を使用して、対照切片に対して事前の抗体滴定を行う必要があります。
    7. 切片をPBSで3回穏やかに洗浄し、結合していない一次抗体を除去した。
    8. PBS中の1:1000の関連するAlexa Fluor二次抗体と共に組織をRTで一晩2時間インキュベートする。
    9. PBS中で組織を5分間穏やかに3回洗浄し、過剰の未結合二次抗体を除去した。
    10. DAPIを含むマウント媒体でスライドをマウントし、RTで暗闇の中でスライドを乾燥させます。
    11. 蛍光顕微鏡を用いて切片を画像化する。

結果

SCADの生成は、P0-P1マウスから背部皮膚を採取すること、全厚生検パンチを生成すること、およびその後の個々のスカッドを96ウェルプレートで最大5日間培養することの3つの重要なステップに分けることができる。読み出しとして、このアッセイは、瘢痕化の空間的および時間的側面を分析するためにさらに適用することができる。空間解析では、組織の2Dおよび3D免疫標識を利用して、発達?...

ディスカッション

傷害後の瘢痕形成を理解するために、いくつかのモデルがすでに開発されている。この点で多くの進歩がもたらされましたが、実際のメカニズムはまだ明らかではありません。前の技術とは対照的に、SCADモデルは、すべての細胞型および皮膚層を組み込んでおり、それによって天然皮膚の複雑さを維持している1819。この方法論は、瘢痕形成を促...

開示事項

すべての著者は、競合する利益を宣言しません。

謝辞

我々は、SCAD方法論13の開発に貢献したJiang et al. 2020のすべての共著者に謝意を呈する。我々は、多光子システムへのアクセスについて、シュテフェン・ディーツェル博士とルートヴィヒ・マクシミランス大学のバイオイメージングコア施設に感謝する。Y.R.は、Else-Kröner-Fresenius-Stiftung(2016_A21)、European Research Council Consolidator Grant(ERC-CoG 819933)、LEO Foundation(LF-OC-21-000835)の支援を受けました。

資料

NameCompanyCatalog NumberComments
10% Tween 20, Nonionic DetergentBiorad Laboratories1610781
Bovine serum albumin, Cold ethanol fractSigmaA4503-50G
DMEM/F-12, HEPES, no phenol red-500 mLLIFE Technologies11039021
DPBS, no calcium, no magnesiumGibco14190169
Epredia Cryostar NX70 CryostatThermo Scientific
Epredia SuperFrost Plus Adhesion slidesFisher scientificJ1800AMNZAdhesion slides
Fetal Bovine Serum, qualified, heat inactivated, E.U.-approved, South America Origin-500 mLLIFE Technologies 10500064
Fluoromount-G with DAPILife Technologies00 4959 52Mounting medium with DAPI
Forceps curved with fine points with guidepinstainless steel(tweezers)125 mm lengthFisher Scientific12381369
Gelatin from porcine skinSigmaG2500-100G
GlutaMAX Supplement-100 mLLIFE Technologies35050038
HBSS, calcium, magnesium, no phenol red-500 mLLIFE Technologies14025092
Ibidi Gas incubation system for CO2 and O2Ibidi11922
Ibidi Heating systemIbidi10915
Leica SP8 upright microscope - Multiphoton excitation 680–1300 nmLeicaEquipped with a 25x water-dipping objective (HC IRAPO L 25x/1.00 W) in combination with a tunable laser (Spectra-Physics, InSight DS + Single)
Non Essential Amino AcidsLIFE Technologies11140035
NuSieve GTG Agarose ,25 gBiozym /Lonza859081
OCT Embedding MatrixCarlroth6478.1
Paraformaldehyde, 16% W/V AQ. 10 x10 mLVWR International43368.9M
Pen-StrepGibco15140122
Stiefel Biopsy-Punch 2 mmStiefel270130
Straight Sharp/Sharp Dissecting Scissors 11.4 cmFisher Scientific15654444
Thimerosal Bioxtra, 97%–101%Sigma-AldrichT8784-1G
Zeiss Axioimager M2 upright microscopeZeiss

参考文献

  1. Longaker, M. T., et al. Adult skin wounds in the fetal environment heal with scar formation. Annals of Surgery. 219 (1), 65-72 (1994).
  2. desJardins-Park, H. E., Foster, D. S., Longaker, M. T. Fibroblasts and wound healing: an update. Regenerative Medicine. 13 (5), 491-495 (2018).
  3. Jiang, X., Iseki, S., Maxson, R. E., Sucov, H. M., Morriss-Kay, G. M. Tissue origins and interactions in the mammalian skull vault. Developmental Biology. 241 (1), 106-116 (2002).
  4. Tripathi, S., et al. Hypertrophic scars and keloids: a review and current treatment modalities. Biomedical Dermatology. 4, 11 (2020).
  5. Martin, P. Wound healing--Aiming for perfect skin regeneration. Science. 276 (5309), 75-81 (1997).
  6. Correa-Gallegos, D., et al. Patch repair of deep wounds by mobilized fascia. Nature. 576 (7786), 287-292 (2019).
  7. Sen, C. K. Human wounds and its burden: An updated compendium of estimates. Advances in Wound Care. 8 (2), 39-48 (2019).
  8. Rinkevich, Y., et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 348 (6232), 2151 (2015).
  9. Leavitt, T., et al. Prrx1 fibroblasts represent a pro-fibrotic lineage in the mouse ventral dermis. Cell Reports. 33 (6), 108356 (2020).
  10. Driskell, R. R., et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 504 (7479), 277-281 (2013).
  11. Walmsley, G. G., et al. Live fibroblast harvest reveals surface marker shift in vitro. Tissue Engineering. Part C, Methods. 21 (3), 314-321 (2015).
  12. Hakkinen, K. M., Harunaga, J. S., Doyle, A. D., Yamada, K. M. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Engineering. Part A. 17 (5-6), 713-724 (2011).
  13. Jiang, D., et al. Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nature Communications. 11 (1), 5653 (2020).
  14. Wan, L., et al. Connexin43 gap junction drives fascia mobilization and repair of deep skin wounds. Matrix Biology: Journal of the International Society for Matrix Biology. 97, 58-71 (2021).
  15. Molbay, M., Kolabas, Z. I., Todorov, M. I., Ohn, T. -. L., Ertürk, A. A guidebook for DISCO tissue clearing. Molecular Systems Biology. 17 (3), 9807 (2021).
  16. Ueda, H. R., et al. Tissue clearing and its applications in neuroscience. Nature Reviews Neuroscience. 21 (2), 61-79 (2020).
  17. Ertürk, A., et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature Protocols. 7 (11), 1983-1995 (2012).
  18. Wilhelm, K. -. P., Wilhelm, D., Bielfeldt, S. Models of wound healing: an emphasis on clinical studies. Skin Research and Technology: Official Journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 23 (1), 3-12 (2017).
  19. Grada, A., Mervis, J., Falanga, V. Research techniques made simple: Animal models of wound healing). The Journal of Investigative Dermatology. 138 (10), 2095-2105 (2018).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

182

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved