Method Article
このプロトコルは、市販のタンパク質成分を使用してビーズの表面にアクチン彗星を生成する方法を説明しています。このようなシステムは、細胞に見られる突起構造を模倣しており、力生成の生理学的メカニズムを簡単な方法で調べるために使用できます。
多くの細胞の動きや形状の変化、および特定の種類の細胞内細菌やオルガネラの運動性は、細胞、細胞小器官、または細菌の表面に動的なネットワークを形成する生体高分子アクチンによって駆動されます。このプロセス中の力生成の生化学的および機械的基礎は、機能化され、制御された一連の成分でインキュベートされたビーズなどの不活性表面上でアクチンベースの動きを無細胞的に再現することによって研究することができる。適切な条件下では、弾性アクチンネットワークがビーズ表面に集まり、ネットワークの成長によって発生する応力によって壊れ、ビーズを前方に推進する「アクチン彗星」を形成します。しかし、そのような実験では、さまざまなアクチン結合タンパク質のホストを精製する必要があり、多くの場合、専門家以外の人の手の届かないところにあります。本稿では、市販の試薬を用いてアクチン彗星とビーズの運動性を再現性よく得るためのプロトコルについて詳述する。ビードコーティング、ビードサイズ、および運動性混合物を変更して、ビード速度、軌道、およびその他のパラメータへの影響を観察することができます。このアッセイは、さまざまなアクチン結合タンパク質の生化学的活性を試験し、アクチンネットワークの活性物質特性を明らかにする定量的物理的測定を行うために使用できます。これはコミュニティにとって有用なツールであり、アクチン結合タンパク質精製の専門知識がなくても in vitro アクチンベースの運動性の研究を可能にします。
細胞内でのアクチン重合は、細胞シグナル伝達の下流にあるアクチンフィラメント核形成の厳密な調節によって空間的および時間的に制御されています1。核形成はアクチン三量体の形成を介して起こり、その後、新生フィラメントの両端が自発的に重合しますが、一方の端(とげのある端)はもう一方の端(尖った端)よりも動的です2。核形成および有棘末端重合が表面に向けられるとき、それらは移動のために細胞膜を押し出し、ATP加水分解をエネルギー源として細胞内のミクロンサイズの物体を動かすのに十分な力(ピコからナノニュートンの範囲)を生成する3。いくつかの例には、アクチン彗星を使用して細胞から細胞へと広がるリステリア・モノサイトゲネス細菌、および有糸分裂中のランダム化遺伝にアクチン彗星ベースの移動が重要であるミトコンドリアが含まれます4,5。エンドソーム上のアクチン彗星および他の細胞内小胞は、ドナー膜からの剥離に関与している6、7、8。
ここで紹介する方法では、細胞アクチン重合のシグナル伝達の側面がバイパスされ、マイクロメトリックポリスチレンビーズに分岐アクチン核生成の活性化剤、特にヒトWASPタンパク質の活性ドメインであるVCA(WAまたはWCAとも呼ばれる)1をコーティングすることにより、アクチン重合が生成されます。次に、コーティングされたビーズは、細胞内の主要なアクチン重合核であるArp2/3複合体を含むアクチン重合に必要な成分を含む混合物中でインキュベートされ、ビーズ表面でVCAによって活性化され、娘フィラメント1の側面から分岐して新しいフィラメントを形成します。アクチンは最初はビーズの周りで均一に重合しますが、その後自然に対称性を破ってビーズを前方に押し出すアクチン彗星を作り、それによって細胞のような突出したネットワークと彗星を制御された方法で再現します。ビーズやその他のコーティングされた表面を用いた同様のアプローチは、アクチン重合の生化学および生物物理学を研究するために過去に私たちや他の人々によって使用されてきました9,10,11,12、しかしこれらの実験にはアクチン結合タンパク質に関する広範な専門知識が必要でした。ここで紹介するプロトコルは、市販の(またはまもなく入手可能になる)試薬でアクチン彗星と運動性を完全に堅牢に作成する方法を説明し、生物物理学的概念を教えるための教育環境を含め、誰でもこのアプローチにアクセスできるようにします。主な特徴には、穏やかで信頼性の高いピペッティングの重要性、アクチン源としてのプロフィリン複合モノマーの使用、およびビーズコーティング試薬としての高活性Apr2/3複合活性化剤の使用の重要性が含まれます。
1. バッファーの調製
注:すべてのバッファーに超高純度のH2Oを使用してください。無菌である必要はありません。手順1.1〜1.4に記載されているすべての溶液を0.2 μmシリンジフィルターでろ過し、使用量に応じてチューブあたり500 μL〜2 mLの部分で分注し、-20°Cで保存します。
2.タンパク質溶液の調製
注:すべての再懸濁には超高純度のH2Oを使用してください。無菌である必要はありません。すべてのタンパク質を氷上で処理し、事前に冷却されたチューブに分注します。気泡が発生しないように穏やかに操作し、タンパク質溶液を濁らせないでください。-80°Cで保管するストックの場合、液体窒素中での急速冷凍は必要ありません。アリコートのサイズを調整して、約5回を超える凍結融解サイクルを回避します, これはどのタンパク質の活性にも影響しないようです.作業アリコートは、-20°Cで数週間保存できます。
3. タンパク質濃度の測定
4.ビーズのコーティング
5.観察用の運動性ミックスとスライドの準備
注:運動性ミックスの総容量は8.4μLで、スライドと18 mm x 18 mmのカバーガラスの間に約25 μmのクリアランスを確保できるため、すべてのサイズ(直径10 μmまで)のビーズが圧迫されません。基本的な運動性ミックスは、約5 μM G-アクチン(10%標識蛍光アクチン)と5 μMプロフィリン、50 nM Arp2/3複合体、および25 nMキャッピングタンパク質(または240 nMゲルソリン)です。
6. 顕微鏡観察
ビーズ上にアクチン彗星を再現性よく作成するための重要な側面の1つは、繊細なアクチン結合タンパク質の穏やかで正確なピペッティングです。ブラッドフォード検量線の生成は、ピペッティングスキルを評価する良い方法です。 図1A、B は、検量線のチューブと、ブラッドフォード試薬と混合した後のBSAの2つの段階希釈液の例を示しています。段階的な青色の色相に注意してください(タンパク質濃度が高いほど、溶液はより青色になります)。分光光度計で読み取ってプロットすると、これらの溶液は 図1Cに示すような標準曲線を与える。慎重なピペッティングを行うには、図に示すように、線形相関係数が0.999になるまでアッセイを繰り返す必要があります。
市販の再懸濁タンパク質の濃度がブラッドフォードアッセイ によって 慎重に評価されたら、コーティングされたビーズと運動性ミックスを調製し、一緒に混合します。 図2A は、彗星形成のさまざまな段階の代表的な画像を示しています:アクチン雲は、SpVCAコーティングされたビーズと運動性媒体を混合してから数分以内に形成されます。雲の偏波は~5分で起こり、彗星の生成は15-20分で起こる。落射蛍光顕微鏡と位相差顕微鏡の両方で見えるアクチン彗星(図2A)は、何時間も伸び続けますが、一定の速度が維持されないため、ビーズの運動性は通常1時間以内に評価されます。一方、VCAコーティングされたビーズでは、明るいアクチン雲が得られるまでに30分かかり(図2B)、彗星は形成されませんが、対称性は1〜2時間で壊れ始め( 図2Bの矢印)、一晩インキュベートすると雲は偏光を示します。
図3 は、キャッピングタンパク質の存在下でのビーズ速度評価の一例を示す。すべてのビーズはほぼ同時に対称性を破るため、スライドをスキャンし、彗星の全集団の写真を経時的に撮影する「疑似タイムラプス」記録が実行されます(図3A)。彗星は解重合しません。したがって、時間の経過とともに測定された彗星の長さの増加は、変位速度の計算に使用できます(図3B)。ゲルソリンは、その減少したキャッピング活性を補うために10倍以上のゲルソリンを添加した場合、彗星形成のためのキャッピングタンパク質の代わりに使用することができる。ゲルソリンの存在下で形成された彗星は質的に同じであり、キャッピングタンパク質を含むビーズとほぼ同じ速度で移動します(図3C)。キャッピング活性はビーズの表面で重合を集中させるための鍵であり、キャッピングタンパク質もゲルソリンも運動性ミックスに含まれていない場合、アクチン雲が偏光して彗星を形成することはありませんが、ビーズの周りに明るいアクチン雲が形成されます(図3D)。ビーズ上の彗星は、運動性ミックスを変化させ、異なるマイクロマニピュレーション技術、例えば15を用いて運動性の結果を観察することによって、異なる生化学的状況におけるアクチンベースの力産生を測定するために使用することができる。
図1:ブラッドフォード標準曲線 。 (A)ブラッドフォード標準曲線を作成するためのチューブの設定方法の写真。サンプルチューブは示されていません。(B)ブラッドフォード試薬と混合された2つの重なり合うBSA連続希釈液の写真。(C)(B)に示す溶液の600 nmでの吸光度を分光光度計で測定し、BSA溶液のタンパク質濃度の関数としてプロットします。線形適合は、サンプル濃度の計算に使用されます。線形適合の相関係数Rは0.999です。 この図の拡大版を表示するには、ここをクリックしてください。
図2:VCAコーティングビーズとは対照的に、SpVCAコーティングビーズでの彗星形成。 (A)代表的なSpVCAコーティングビーズ(各画像で異なるビーズ)を経時的に示す。混合の瞬間からの時間が示されています。アクチン雲はすぐに形成され、雲の偏光は彗星を与え、それは何時間も伸び続けます。(B)代表的なVCAコートビーズ(各画像に異なるビーズ)を経時的に示す。アクチン雲の偏光の始まりを見るには1時間以上必要であり(矢印)、長いインキュベーションでも彗星は生成されません。すべての画像は直径4.5μmのビーズ、蛍光アクチンの落射蛍光イメージングと位相差の視覚化を組み合わせたもので、(A)、スケールバー= 5μmの15分および20分の時点の位相差可視化です。 この図の拡大版を表示するには、ここをクリックしてください。
図3:彗星とビーズの速度解析 。 (A)および(C)キャッピングタンパク質(CP)またはゲルソリンのいずれかの存在下では、アクチン雲は反応の最初の20分で分極して彗星を形成し、彗星は時間とともに伸長します。各画像に示されている混合からの時間。各画像は異なるビーズです。ビーズと調製物の間に多少のばらつきがありますが、ここで説明する標準条件下では、平均してビーズはミクロン/サブミクロン/分の速度(0.2〜1μm / min)で移動します。(B)彗星長(ビーズの全集団)の経時的な評価を示す代表的なグラフ。線形相関の傾きは平均変位速度に対応し、この場合は0.24 μm/minです。 (D)キャッピング活性がない場合(キャッピングタンパク質またはゲルソリンなし)、アクチン雲はビーズの周りに形成されますが、彗星は形成されません。すべての画像は直径4.5μmのビーズ、蛍光アクチンの落射蛍光イメージング、スケールバー= 5μmです。 この図の拡大版を表示するには、ここをクリックしてください。
ここで詳述するプロトコルは、市販のタンパク質を使用して、ビーズ表面上のアクチンネットワークの成長、彗星形成、およびビーズの運動性を得る方法を説明しています。ただし、彗星が再現性よく観測されないか、スライドとカバーガラスの間で不均一になることがあります。次の説明では、プロトコルのいくつかの重要なポイントを強調し、調整可能ないくつかのパラメータを提案します。覚えておくべき1つの要因は、彗星の形成とビーズの速度は温度の影響を受け、25°Cをはるかに超える温度または23°Cをはるかに下回る温度は彗星形成に悪影響を及ぼし、再現不可能なデータを与えることです。温度管理された顕微鏡または温度管理された部屋での顕微鏡の使用を強くお勧めします。蛍光顕微鏡で彗星を観察するための運動性ミックスには、蛍光標識されたアクチンが含まれることがよくありますが、彗星の長さがビーズの直径を超えると、位相差顕微鏡ではビーズの隣の暗い塗抹標本としても見ることができます。位相差の可視化は、スピニングディスク を介して も蛍光イメージングに関連する光毒性があるため、タイムラプスイメージングに適しています。ビーズは時間の経過とともに沈降するため、倒立顕微鏡は直立顕微鏡よりも水平方向のビーズドリフトが少なく、映画に適しています。マニキュアなどの物質が彗星の形成を妨げるため、スライドをシールするために溶融VALAPを使用することは重要です。大量のVALAPをビーカーで作り、次にすくい取って、より急速に溶けやすい小さなビーカーを補充することができます。VALAPは室温で何年も良いです。
もう一つの重要な技術的側面は、綿密な緩衝液と運動性ミックス調製です。MB13を調製するとき、特にpH調整ステップでは注意が必要です。MB13のpHは、ATP加水分解を避けるためにNaOHで中性に迅速に調整する必要がありますが、pHが中性に近づくにつれてEGTAが可溶化するため、速すぎないでください。EGTAは、アクチンに結合したカルシウムを複合体化し、運動性ミックスでより活性なマグネシウム形態16を与えるため、重要な成分です。MB13の準備が速すぎたり遅すぎたりすると、彗星の形成が最適ではないか、まったく形成されません。追加の重要なポイントは、条件で遊ぶときに運動性ミックス中のKCl濃度を注意深く追跡することです。例えば、反応ミックスに1x MB13を使用し、プロフィリン、キャッピングタンパク質、およびArp2/3複合体をMB13で希釈する場合、運動性反応における最終KCl濃度は、Gバッファーによる希釈により約40〜50mMになります。この濃度はコメットアッセイで最良の結果をもたらし、60 mM KClを超えるとArp2/3複素核形成活性が低下します。
タンパク質面では、アクチン彗星を得るための重要な技術的側面は、市販のアクチン結合タンパク質の適切な取り扱い、特にマイクロリットルの量の正確なピペッティングです。ブラッドフォード標準曲線の直線性はピペッティングの優れたテストであり、この曲線はタンパク質濃度の日常的な測定に使用できます。実際、コメットの手順に再懸濁された市販のタンパク質を使用する場合、再懸濁中のバッチの変動性とユーザーエラーが実際の濃度と予想される濃度の違いにつながる可能性があるため、タンパク質濃度を常に検証することが重要です。タンパク質濃度のわずかな違いが彗星の完全な欠如につながることがあります。
ここで提示される方法の別の重要な側面は、重合のための燃料としてのプロフィリン複合体G-アクチンの使用である。歴史的に、インビトロ系は、アクチン源としてプレポリマー化糸状アクチン(F−アクチン)を使用した:表面上のバルク供給重合における解重合10、17。これには、G-アクチンレベルを制御するという利点がありましたが、解重合を触媒するために追加のコンポーネントを必要とする複雑さの層が追加されました。アクチンネットワークのターンオーバーは、ビーズの表面での核生成と重合によって促進される力の生成と運動性に必要ではないのに対し、ADF/コフィリンなどのアクチン解重合因子は表面から遠く離れた老化ネットワークに作用するため18、アクチンベースの運動性のほとんどのin vitro再構成は、簡単にするためにターンオーバーなしで行われます。しかしながら、G-アクチンを使用することにはいくつかの欠点がある。第1に、凍結乾燥された市販のアクチンを使用する場合、オリゴマーが存在する。ここで説明する解重合ステップは、再現性のある結果を得る上で非常に重要です。特に、G-緩衝液は伝統的にpH 8に調整されていますが、おそらく低pHが解重合を促進するため、この記事に記載されているアッセイでは、より低いpH(例えばpH7)がよりよく機能するようです19。G-アクチンを使用することの別の欠点は、重合に許容される塩条件に置かれると、自発的な核生成が起こり、F-アクチンがバルクおよびビーズ表面に形成されることである。G-アクチンとプロフィリンを複合化することで、バルクおよび尖った末端重合における自発的な核生成を抑制し、それによって核生成と有刺鉄線末端重合の両方を表面20に集中させる。プロフィリン−G−アクチンは、細胞内のアクチンの多くがこの形態21で存在するので、生理学的に関連性がある。ここでは、プロフィリン:アクチンの1:1の比率が使用されます。しかしながら、より高い比率(例えば3:1)はバルクでの重合をより完全に阻害するが、より高い比率はまた、Arp2/3複合体および有刺鉄線末端伸長をある程度阻害する22,23。
キャッピング活性は、表面活性化Arp2/3錯体24,25による核生成のサイクルを介して表面に新しいアクチンを確実に挿入するため、彗星形成にとっても重要です。キャッピングがなければ、表面での重合は雲を壊すのに十分な張力を蓄積しないため、アクチン雲は対称性を破って彗星を形成することはありません26。過去には、自家製の組換えマウスキャッピングタンパク質13を使用してきましたが、この記事で実施されたテストでは、市販の組換えヒトキャッピングタンパク質は、市販のゲルソリンと同様に効果的であることが示されていますが、10倍以上のゲルソリンを使用する必要があり、特定のアプリケーションでは、キャッピング27と同様にアクチン切断活性があるため、適切ではない場合があります。
最後に、この方法の堅牢性は、非常に活性なArp2/3複合体活性化剤であるストレプトアビジン-pVCA(SpVCA)28の使用にあります。SpVCAは、プロフィリン-G-アクチン条件において最も効率的であることが見出されるので、Arp2/3複合体結合ドメインに加えてWASPのプロフィリン-G-アクチン結合ドメイン(pドメイン)を含む29。さらに重要なことに、ビオチン-ストレプトアビジン結合 を介した 表面機能化を可能にするために最初に導入されたストレプトアビジンタグの使用は、おそらくストレプトアビジンが四量体であり、したがってArp2 / 3複合体活性を増加させることが知られている活性化因子をクラスター化しているという事実に起因して、Arp2 / 3複合体活性化を増加させる追加の効果を有する30.商業的に生産されたSpVCAは現在開発中であり、まもなく購入できるようになります。さらに、40 μLの2 μM SpVCAは、3 cm2 のビーズ表面をコーティングするために日常的に使用されていますが、他のコーティング濃度(より高いおよびより低い)も機能し、これらの条件で遊ぶと、異なる彗星の成長速度と形態が得られます。実際、彗星が形成されない場合、または彗星のサイズがスライド上で均一でない場合は、運動性混合物中の異なるKClおよびプロフィリン濃度と同様に、異なるコーティング条件をテストする必要があります。運動性ミックス中のアクチン、Arp2/3複合体、およびキャッピングタンパク質の濃度も、彗星形成を最適化するために変更することができますが、私たちの手では、これらの比率を変更すると、しばしば混乱した結果が生じます。
結論として、ここで説明する方法は、ビーズ表面および運動性上にアクチンアセンブリを生成するが、SpVCAで官能化できる任意の表面を使用することができる。ここで説明した吸着が機能しない場合は、ストレプトアビジン部分を使用して、ビオチン化後にSpVCAを目的の表面に付着させることができます。このようにして形成されたアクチン構造は、彗星であろうとなかろうと、アクチンネットワークの異なる生化学的および生物物理学的側面を試験するために使用することができ、マイクロピペット、光ピンセット、およびレーザーアブレーションによる物理的操作に特に適している15、26、31、32。ここで説明するアプローチは、研究コミュニティでの使用に加えて、学部生の生物物理学の学生が対称性の破れや自己組織化などの能動的物質の概念を研究するための教育ツールとして適切です。
著者は、この記事の内容と利益相反がないことを宣言します。
私たちは、LPENSの新しい家のメンバーの温かい歓迎、特にABCDJチームのすべての助けとサポートに心から感謝します。JPは財団ARC(グラントPJA 20191209604)からの財政的支援を認め、C.S.はヒューマンフロンティアサイエンスプログラム組織からの財政的支援(グラントRGP0026/2020)を認めます。
Name | Company | Catalog Number | Comments |
Actin, rabbit muscle, Alexa Fluor 488 conjugate | Invitrogen (ThermoFisher Scientific) | A12373 (recently discontinued) | This product can be replaced with ATTO-488 actin from Hypermol. |
Actin, rabbit muscle, ATTO-488 | Hypermol | 8153 | |
Actin, rabbit skeletal muscle | Cytoskeleton | AKL99 | |
Arp2/3 complex | Cytoskeleton | RP01P | |
ATP | Sigma | A7699 | |
BioSpectrometer, basic | Eppendorf | 035739 | |
Bradford Reagent | Bio-Rad | 500-0006 | |
BSA, high quality | Sigma | A3059 | |
BSA standard 2 mg/mL (Pierce) | Thermo Scientific | 23209 | |
Capping protein (a1b2, mouse recombinant) | Home-purified (Reference 13) | This product will soon be commercially available from Cytoskeleton. | |
Capping protein (a1b2, human recombinant) | Hypermol | 8322 | |
Cube, GFP: U-MNIBA3 or U-MWB2 | Olympus | discontinued | Any GFP cube, adapted to the microscope being used, can be used. |
Dry block, agitating: ThermoMixer C (refrigerated) | Eppendorf | 035963 | |
** with SmartBlock, 24 microtubes 2 mL | Eppendorf | 035969 | |
Gelsolin (human recombinant, His-tagged) | Cytoskeleton | HPG6 | |
Lanolin | Sigma | 49909 | |
Microcentrifuge 5427R + rotor | Eppendorf | 934126 | |
Microscope, upright: BX51 | Olympus | discontinued | Any epifluorescence upright microscope equipped with phase contrast optics can be used. |
Microscope, inverted: IX70 | Olympus | discontinued | Any epifluorescence inverted microscope equipped with phase contrast optics can be used. |
Paraffin | Sigma | 76244 | |
Petroleum jelly: Vaseline | Sigma | 16415 | |
Pipettes Research Plus | Eppendorf | Gilson pipettes don't work as well for delivery of very small volumes (0.5 µL for example). | |
**10 µL | 933954 | ||
**2.5 µL | 933953 | These two sizes are essential, but the use of high-quality pipettes (a full Research Plus set for example) is recommended. | |
Polystyrene carboxylate beads | Polysciences | ||
**approx. 1 µm diameter | 08226 | ||
**approx. 4.5 µm diameter | 17140-5 | ||
Profilin 1 (human recombinant, untagged) | Cytoskeleton | PR02 | |
SpVCA (human WASP pVCA domain, N-ter His-tag, C-ter Streptavidin tag) | Home-purified (Reference 14) | This product will soon be commercially available from Cytoskeleton. | |
VCA (human WASP VCA domain, GST-tagged) | Cytoskeleton | VCG03 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved