このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Here we present a protocol for obtaining entomopathogenic fungi from a forest wood borer and a substitutive way to evaluate their entomopathogenic activities using a Coleopteran model insect. This method is efficient and convenient for exploring entomopathogenic fungal resources from wood-boring insect pests in natural forests.
Forest wood borers (FWB) cause severe tree damage and economic losses worldwide. The release of entomopathogenic fungi (EPF) during the FWB emergence period is considered an acceptable alternative to chemical control. However, EPF resources have been significantly less explored for FWBs, in contrast to agricultural insect pests. This paper presents a protocol for exploring EPF resources from FWBs using wild Monochamus alternatus populations as an example. In this protocol, the assignment of traps baited with M. alternatus attractants to different populations guaranteed the collection of adequate samples with natural infection symptoms, during the emergence periods of the beetle. Following finely dissecting integuments and placing them onto a selective medium, fungal species were isolated from each part of beetle bodies and identified based on both molecular and morphological traits.
Several fungal species were certified as parasitic EPFs via re-infection of healthy M. alternatus with spore suspensions. Their behavioral phenotypes on M. alternatus were observed using scanning electron microscopy and further compared with those on the Coleopteran model insect Tribolium castaneum. For EPFs that present consistent parasitism phenotypes on both beetle species, evaluation of their activities on T. castaneum provided valuable information on lethality for future study on M. alternatus. This protocol helped the discovery of EPF newly reported on M. alternatus populations in China, which could be applied as an efficient approach to explore more EPF resources from other FWBs.
The devastation caused by insect pests has led to great ecological and economic losses in both forest and agricultural ecosystems. Most agricultural pests expose themselves to natural enemies or artificial control agents while damaging host plants. Instead, forest wood borers (FWB) nearly complete their whole developmental cycles inside host tree trunks1, which raises large challenges to explore efficient biocontrol organisms from FWB in the wild field. What is even worse is that FWBs carry a great number of phytopathogens2 or have an intimate relationship with these pathogens as their potential vectors....
1. Isolation of fungi from M. alternatus (Figure 1)
Isolation and identification of fungal isolates from M. alternatus
With the aid of attractant traps, a large number (approximately 500 beetles in total) of M. alternatus were collected from five geographical regions. Beetle cadavers with typical symptoms of infection by entomopathogenic fungi were picked; then, body integuments of every beetle were dissected into several positions as described in protocol step 1.3. As a result, more than 600 fungal isolates were .......
Different geographical populations of FWB may develop varied interactions with the natural entomopathogenic fungi, due to long-term environmental adaptation of EPF species to local climate factors and the specific genotypic population of the host insect44,45. Expansion of the sampling sites to multiple insect occurrence regions helps increase the possibility of acquiring diverse strains or species of EPF from their natural hosts, as described by previous studies .......
This research was supported by the National Key Research and Development Program of China (2021YFC2600100) and the Natural Science Foundation of Zhejiang Province (LY21C040001).
....Name | Company | Catalog Number | Comments |
1.5 mL, 2 mL centrifuge tubes | Biosharp | BS-15-M | |
10 µL pipet tips | Sangon Biotech | F601216 | |
10 µL, 20 µL, 100 µL, 200 µL, 1,000 µL pipettes | Rainin | ||
1,000 µL pipet tips | Sangon Biotech | F630102 | |
2 mL cryogenic vials | Corning | 430659 | |
20x PBS buffer | Sangon Biotech | B548117-0500 | |
200 µL pipet tips | Sangon Biotech | F601227 | |
2,000 bp maker | TaKaRar | SD0531 | |
50 mL tubes | Nest | 602052 | |
50% glutaraldehyde solution | Sangon Biotech | G916054 | |
50x TAE buffer | Sangon Biotech | B548101 | |
6x loading buffer | TaKaRar | SD0503 | |
Agarose | Sangon Biotech | A610013 | |
Anhydrous ethanol | Jkchemical | LB10V37 | |
Biochemistry Cultivation Cabinet | Shanghaiyiheng | LRH-250F | |
Chloroform | Juhua | 61553 | |
Commercial beetle traps | FEIMENGDI | BF-8 | www.yinyouji.com |
Gel imager | Bio-Rad | GelDoc XR+ | |
Glycerol | Sangon Biotech | A600232 | |
High speed refrigerated centrifuge | Sigma | D-37520 | |
High-Pressure Steam Sterilization Pot | Mettler Toledo | JA5003 | |
Isopropyl alcohol | General-reagent | G75885B | |
Nucleic acid dye | Sangon Biotech | A616696 | |
Optical Microscope, OM | Leica | DM2000 | |
Parafilm | Parafilm | PM996 | |
PCR meter | Heal Force | Trident960 | |
Penicillin G | Marklin | GB15743 | |
Potato dextrose agar, PDA | Oxoid | CM0139 | |
Potato dextrose broth, PDB | Solarbio | P9240 | |
Primers | Sangon Biotech | / | |
Primers Taq | TaKaRar | RR902A | |
Rapid Fungi Genomic DNA Isolation Kit | Sangon Biotech | B518229 | |
Scanning Electron Microscope, SEM | Hitachi | S-3400N | |
Streptomycin | Marklin | S6153 | |
Tetracycline | Marklin | T829835 | |
Tween-80 | Marklin | T6336 | |
Vacuum freeze dryer | Yamato | DC801 | |
Vortex Shaker | HLD | WH-861 | |
β-Mercaptoethanol | Marklin | M6230 |
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved