JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
We present a method to control the interfacial energy of a liquid metal in an electrolyte via electrochemical deposition (or removal) of a surface oxide layer. This simple method can control the capillary behavior of gallium-based liquid metals by tuning the interfacial energy rapidly, significantly, and reversibly using modest voltages.
계면 장력을 제어하는 계면 장력이 지배적 힘 서브 밀리미터 길이 스케일에서 유체의 형상, 위치 및 흐름을 조작하기위한 효과적인 방법이다. 다양한 방법이 규모 수성 및 유기 액체의 계면 장력을 제어하기 위해 존재한다; 그러나, 이러한 기술은 그들의 큰 계면 장력 액체 금속 용 유틸리티를 제한하고있다.
액체 금속은 전자 및 전자 장치에있어서, 부드러운 신축성 및 형상 재구성 컴포넌트를 형성 할 수있다. 그것이 기계적 방법 (예를 들어, 펌핑)을 통해 상기 유체를 조작하는 것이 가능하지만, 전자의 방법은, 소형화 제어 및 구현하기 쉽다. 그러나, 대부분의 전기 기술은 자신의 제약이있다 : - 온 - 유전체 일렉트로 겸손 작동을위한 대형 (kV의) 전위, electrocapillarity은, 계면 장력에 상대적으로 작은 변화에 영향을 미칠 수있는 지속적인 ELE이 필요합니다ctrowetting는 모세관 내의 액체 금속 플러그로 제한된다.
여기서, 우리는 전기 화학 반응을 통해 표면 갈륨 갈륨 계 액체 금속 합금을 작동시키기위한 방법을 제시한다. 가역적으로 빠르게 전해질에서 액체 금속의 표면에 전기 잠재력을 제어하고하면 (제로 근처에 ̴500 mN의 / M) 크기의이 원 이상 구매시에 의해 계면 장력을 변경합니다. 또한,이 방법은 대향 전극에 대하여인가 단지 아주 적당한 전위 (V 1은 <)을 필요로한다. 장력의 변화의 결과는 주로 계면 활성제로서 작용하는 표면 산화물 층의 전기 화학 증착에 기인한다; 산화물의 제거는 계면 장력, 반대로 증가합니다. 이 기술은 전해액의 다양한 적용이 놓이는 기판과 무관 할 수있다.
This method provides a simple way to control the surface tension of liquid metals containing gallium. The method uses modest voltages (~1 V) applied directly to the liquid metal (relative to a counter electrode in the presence of electrolyte) to achieve enormous and reversible changes to the surface tension of the metal1.
Surface tension is a dominant force for liquids at small length scales and is important for a number of capillary phenomena including wetting, spreading, and surface-tension driven flow. Consequently, the ability to control surface tension is a sensible way to manipulate the shape, position, and flow of liquids at sub-mm length scales. The most common way to alter surface tension between two fluids is to use a surfactant, which is a molecule that spans the interface between the fluids. Surfactants lower surface tension, but in a way that is not easy to reverse since it is difficult to remove surfactants from the interface. Surface tension can also be altered using a variety of techniques, including temperature gradients2,3, light4, surface chemistry5-7,and voltage8. But most of these methods result in modest changes to surface tension, particularly for liquid metals, which have notably large surface tensions.
The ability to control the surface tension of liquid metal could enable new opportunities for creating shape reconfigurable structures with metallic properties for electronic, thermal, and optical applications9-14. The most common liquid metal is Hg, which is noted for its toxicity. The methods described here are relevant for liquid metals based on gallium. These metals have low viscosity, large surface tension, low volatility (low vapor pressure), and low toxicity15. Importantly, these metals form surface oxides composed of gallium oxide that are a few nm thick in air16. This oxide layer creates a physical skin that historically has been a nuisance for electrochemical and fluid dynamic applications17. The method here utilizes the oxide in new ways to control surface tension.
The most common way to manipulate liquid metals in electrolyte is to apply a potential to the metal relative to a counter electrode18. Oppositely charged ions from the electrolyte match the charges on the metal, causing the interfacial tension to drop. This phenomenon-termed electrocapillarity-has been known since the 1870s as described by Lippman19and has been utilized for alloys of gallium20. Typically, electrocapillarity achieves modest changes to surface tension, since undesirable electrochemical reactions limit the range of voltages applied to the metal. In contrast, the method described here utilizes the surface oxidation of the metal (or conversely, the reduction of the surface oxide) as a way to achieve enormous changes in surface tension above and beyond changes resulting from electrocapillarity. The leading explanation for this phenomenon is that the oxide is asymmetric; that is, the outer surface of the oxide terminates with hydroxyl groups (making a low interfacial tension interface with the aqueous electrolyte), and the interior surface of the oxide terminates with gallium atoms (making a low interfacial tension interface with the metal). In contrast, the removal of the oxide via electrochemical reduction results in a bare metal-electrolyte interface, which returns the metal back to a state of high surface tension. We characterize the interfacial tension of the metal by analyzing the shape of sessile droplets as a function of voltage while assuming that gravity and surface tension are the dominant forces that define the curvature of its surface.
The advantage of this technique relative to classic electrocapillarity is that it can reversibly tune the tension of low toxicity liquid metals over enormous ranges (from ~500 mN/m to near zero). This delta change in surface tension may be the largest ever reported in literature for any fluid and it can be accomplished in a tunable and reversible manner. These large changes in surface tension are useful for manipulating the capillary behavior of metals; for example, it can induce the metal to spread on a surface, withdraw the metal from microchannels, fill microchannels with metal, and overcome the Rayleigh instabilities to form liquid metal fibers1,21.
A drawback of this technique is that it requires electrolyte. It works best in acidic or basic conditions, because these electrolytes remove excess surface oxide that would otherwise contaminate the surface of the metal and mechanically restrict the movement of the metal. The simultaneous removal and deposition of the oxide layer complicates the analysis of the interfacial phenomena and it is our hope the methods described in this paper empowers additional analysis. Another disadvantage is that the electrochemical reactions at the surface of the metal must be matched by complimentary half-reactions at the counter electrode22,23. This can lead to hydrogen bubbles forming at the counter electrode.
전해질 액체 금속의 계면 장력의 조작 1.
을 Sessile 물방울를 통해 2. 표면 장력 측정
3. 모세관 주입
4. 모세관 탈퇴
도 1은 산화 및 환원에 대한 간단한 2 전극 기술의 예를 나타낸다. 이때, 1 M NaOH 용액 연락처에 구리선을 배치 액체 금속의 70 μL 강하의 전기적인 접속을 확립한다. 1 M NaOH를 인해 계면 장력까지 비드 금속을 금속의 표면 산화물을 제거하고 있습니다. 드롭 및 백금 메쉬 대향 전극 사이에 2.5 V 전위를인가하면, 드롭의 표면을 산화시?...
이 방법은 표면 산화물의 증착 및 제거를 작은 구동 전압을 사용하여 갈륨 계 액체 금속의 표면 장력을 제어한다. 방법 만 전해질 용액에서 작동되지만,이 간단하고, 다른 다양한 조건에서 작동하지만, 주목할 미묘있다. 전위의 부재, 모두 산성 및 염기성 용액은 산화물 (27)을 에칭하여. 산화 전위의 적용은 산성 및 염기성 용액 모두를 포함하여 수성 전해질의 표면 산화물의 생성을 ?...
The authors have nothing to disclose.
The authors acknowledge support from Samsung, the NC State Chancellors Innovation Funds, NSF (CAREER CMMI-0954321 and Triangle MRSEC DMR-1121107), and Air Force Research Labs.
Name | Company | Catalog Number | Comments |
Eutectic Gallium Indium | Indium Corporation | ||
Sodium Hydroxide | Fisher Scientific | 2318-3 | |
Hydrochloric Acid | Fisher Scientific | A481-212 | |
Sodium Fluoride | Sigma-Aldrich | 201154 | |
Optical Adhesive | Norland | NOA81 | |
Polydimethylsiloxane (Sylgard-184) | Dow Corning | Silicone Elastomer Kit | |
Borosilicate Glass Capillaries | Friedrich and Dimmoch | B41972 | |
Ag/AgCl Reference Electrode | Microelectrodes Inc. | MI-401F | |
Voltage Source | Keithley | 3390 | |
Potentiostat | Gamry | Ref 600 | |
Laser Cutter | Universal Laser Systems | VLS 3.50 |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유