JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
We present a protocol for preparing a two-layer density-stratified liquid that can be spun-up into solid body rotation and subsequently induced into Rayleigh-Taylor instability by applying a gradient magnetic field.
Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses1, rocketry2 or linear electric motors3 to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authorse.g. 4,5,6 have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10-6 - 10-5, compared to a ferrofluids. The dominant effect of the magnetic field applies a body-force to each layer changing the effective weight. The upper layer is weakly paramagnetic while the lower layer is weakly diamagnetic. When the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted towards the magnet. A Rayleigh-Taylor instability is achieved with application of a high gradient magnetic field. We further observed that increasing the dynamic viscosity of the fluid in each layer, increases the length-scale of the instability.
A density stratified fluid system consisting of two layers can be arranged in a gravitational field in either a stable or an unstable configuration. If the dense heavy layer underlies the less dense, light layer then the system is stable: perturbations to the interface are stable, restored by gravity, and waves may be supported on the interface. If the heavy layer overlays the light layer then the system is unstable and perturbations to the interface grow. This fundamental fluid instability is the Rayleigh-Taylor instability7,8. Exactly the same instability may be observed in non-rotating systems that are accelerated towards the heavier layer. Due to the fundamental nature of the instability it is observed in very many flows that also vary greatly in scale: from small-scale thin film phenomena9 to astrophysical scale features observed in, for example, the crab nebula10, where finger-like structures are observed, created by pulsar winds being accelerated through denser supernova remnants. It is an open question as to how the Rayleigh-Taylor instability can be controlled or influenced once the initial unstable density difference has been established at an interface. One possibility is to consider bulk rotation of the system. The purpose of the experiments is to investigate the effect of rotation on the system, and whether this may be a route to stabilization.
We consider a fluid system that consists of a two-layer gravitationally unstable stratification that is subject to steady rotation about an axis parallel to the direction of gravity. A perturbation to an unstable two-layer density stratification leads to baroclinic generation of vorticity, i.e., overturning, at the interface, tending to break-up any vertical structures. However, a rotating fluid is known to organize itself into coherent vertical structures aligned with the axis of rotation, so-called 'Taylor columns'11. Hence the system under investigation undergoes competition between the stabilizing effect of the rotation, that is organizing the flow into vertical structures and preventing the two layers overturning, and the destabilizing effect of the denser fluid overlying the lighter fluid that generates an overturning motion at the interface. With increased rotation rate the ability of the fluid layers to move radially, with opposite sense to each other, in order to rearrange themselves into a more stable configuration, is increasingly inhibited by the Taylor-Proudman theorem12,13: the radial movement is reduced and the observed structures that materialize as the instability develops are smaller in scale. Fig. 1 shows qualitatively the effect of the rotation on the eddies that form as the instability develops. In the left hand image there is no rotation and the flow is an approximation to classical non-rotating Rayleigh-Taylor instability. In the right hand image all experimental parameters are identical to the left hand image except that the system is being rotated about a vertical axis aligned with the center of the tank. It can be seen that the effect of the rotation is to reduce the size of the eddies that are formed. This, in turn, results in an instability that develops more slowly than the non-rotating counterpart.
The magnetic effects that modify the stress tensor in the fluid may be regarded as acting in the same way as a modified gravitational field. We are therefore able to create a gravitationally stable stratification and spin it up into solid body rotation. The magnetic body forces generated by imposing the gradient magnetic field then mimic the effect of modifying the gravitational field. This renders the interface unstable such that the fluid system behaves, to a good approximation, as a classical Rayleigh-Taylor instability under rotation. This approach has been previously attempted in two dimensions without rotation14,15. For an applied gradient magnetic field with induced magnetic field B, the body force applied to a fluid of constant magnetic volume susceptibility χ is given by f = grad(χB2/µ0), where B = |B| and µ0 = 4π × 10-7 N A-2 is the magnetic permeability of free-space. We may therefore consider the magnet to manipulate the effective weight of each fluid layer, where the effective weight per unit volume of a fluid of density ρ in a gravitational field of strength g is given by ρg - χ (∂B2/∂z)/(2 µ0).
NOTE: The experimental apparatus is shown schematically in Fig. 2. The main part of the apparatus consists of a rotating platform (300 mm × 300 mm) mounted on a copper cylinder (55 mm diameter) that descends under its own weight into the strong magnetic field of a superconducting magnet (1.8 T) with a room temperature vertical bore. The platform is made to rotate via an off-axis motor that turns a slip-bearing with a keyhole orifice. The copper cylinder is attached to a key-shaped drive shaft that simultaneously rotates, and descends once the holding-pin is removed.
1. Preparation of Non-standard Equipment
2. Preparation of Experiment
3. Execution of Experiment
4. Reset Experiment
5. Image Processing
Fig. 4 shows the development of the Rayleigh-Taylor instability at the interface between the two fluids, for four different rotation rates: Ω = 1.89 rad s-1 (top row), Ω = 3.32 rad s-1, Ω = 4.68 rad s-1, and Ω = 8.74 rad s-1 (bottom row). The interface is shown evolving in time from t = 0 s (left hand column) with increments of 0.5 s to t = 3.0 s (right hand column). The right hand column therefore r...
There are two critical steps within the protocol. The first is 2.1.6.4. If the light layer is floated on the dense layer too rapidly then irreversible mixing of the two miscible fluid layers takes place. It is essential that this is avoided and that a sharp (<2 mm) interface between the two layers is achieved. The second critical step is 3.1.5. If the experiment is released toward the magnet without being fully spun-up into solid body rotation or without the visualization and image capture apparatus in position and o...
The authors have nothing to disclose.
RJAH acknowledges support from EPSRC Fellowship EP/I004599/1, MMS acknowledges funding from EPSRC under grant number EP/K5035-4X/1.
Name | Company | Catalog Number | Comments |
Blue water tracing dye | Cole-Parmer | 00295-18 | |
Red water tracing dye | Cole-Parmer | 00295-16 | |
Sodium Chloride | >99% purity | ||
Manganese Chloride Tetrahydrate | See MSDS | ||
Fluorescein sodium salt | |||
Magnet | Cryogenic Ltd. London |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유