Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Cystometry is an efficient technique to measure bladder function of small animals in vivo. The bladder is continuously infused at rates controlled through an intravesical catheter, whereas the urethra is left free for micturition. This allows for repetitive filling and emptying of the bladder, while intravesical pressure and voided volume are recorded.
The lower urinary tract (LUT) functions as a dynamic reservoir that is able to store urine and to efficiently expel it at a convenient time. While storing urine, however, the bladder is exposed for prolonged periods to waste products. By acting as a tight barrier, the epithelial lining of the LUT, the urothelium, avoids re-absorption of harmful substances. Moreover, noxious chemicals stimulate the bladder's nociceptive innervation and initiate voiding contractions that expel the bladder's contents. Interestingly, the bladder's sensitivity to noxious chemicals has been used successfully in clinical practice, by intravesically infusing the TRPV1 agonist capsaicin to treat neurogenic bladder overactivity1. This underscores the advantage of viewing the bladder as a chemosensory organ and prompts for further clinical research. However, ethical issues severely limit the possibilities to perform, in human subjects, the invasive measurements that are necessary to unravel the molecular bases of LUT clinical pharmacology. A way to overcome this limitation is the use of several animal models2. Here we describe the implementation of cystometry in mice and rats, a technique that allows measuring the intravesical pressure in conditions of controlled bladder perfusion.
After laparotomy, a catheter is implanted in the bladder dome and tunneled subcutaneously to the interscapular region. Then the bladder can be filled at a controlled rate, while the urethra is left free for micturition. During the repetitive cycles of filling and voiding, intravesical pressure can be measured via the implanted catheter. As such, the pressure changes can be quantified and analyzed. Moreover, simultaneous measurement of the voided volume allows distinguishing voiding contractions from non-voiding contractions3.
Importantly, due to the differences in micturition control between rodents and humans, cystometric measurements in these animals have only limited translational value4. Nevertheless, they are quite instrumental in the study of bladder pathophysiology and pharmacology in experimental pre-clinical settings. Recent research using this technique has revealed the key role of novel molecular players in the mechano- and chemo-sensory properties of the bladder.
1. Laboratory Animals
2. Anesthesia
3. Surgical Procedure - Bladder Catheter Implantation
4. Setup and Cystometry
5. Representative Results
Figure 1. Laparotomy overview. A) Place the rat in the supine position. B) Shave and antiseptically prepare the surgical site. C) Incision of the skin. D) Incision of the abdominal muscles, and bladder exposure.
Figure 2. A purse-string suture.
Figure 3. Catheter implantation.
Figure 4. Tunnelling of the catheter.
Examples of pressure measurements obtained during intravesical perfusion of saline in a conscious rat and an anesthetized mouse are shown in Figure 5. Multiple parameters can be extracted from the pressure signal (e.g. the intercontractile interval, the baseline pressure and the threshold pressure). For comprehensive descriptions of these parameters, please see Andersson et al. (ref 4) and Yoshiyama et al. (ref 10).
We have recently used cystometry to identify the molecular targets of mustard oil (MO), a highly reactive compound that has been long used in experimental models of inflammation and hyperalgesia of visceral organs such as the urinary bladder11,12. Intravesical infusion of 10 mM MO induced a strong increase in the voiding frequency (decrease in the intercontractile interval) in wild type mice (Figure 6A, B) and a decrease of the voided volume6. Interestingly, MO induced similar changes in mice deficient of the MO receptor TRPA1. In contrast, MO induced much weaker changes in cystometric parameters in Trpv1 KO mice than in WT mice and was without any effect in Trpa1/Trpv1 KO mice. Together with measurements of the release of the Calcitonin Gene Related Peptide (CGRP)6, these data indicate demonstrate that TRPV1 may play a key role in visceral irritation induced by MO.
Figure 5. Representative traces of intravesical pressure recorded in a conscious female rat (A) and in an anesthetized female mouse (B). The lowest pressure is defined as the "baseline pressure" (red arrows). The pressure at the end of the filling phase is marked with blue arrows. The volume of fluid infused between these points, divided by the pressure difference, allows calculation of the compliance of the bladder wall (compliance = infused volume/(threshold pressure - baseline pressure). The "intercontractile interval" (ICI) is the time between two voiding contractions.
Figure 6. Effects of intravesical application of mustard oil on the cystometry pattern in wild type and Trpa1, Trpv1 and Trpa1/Trpv1 knockout mice. (A) Representative examples of intravesical pressure changes recorded in WT, Trpa1 KO, Trpv1 KO and Trpa1/Trpv1 KO mice in response to infusion of saline and 10 mM MO. (B) Time course of the average instantaneous voiding frequency before and during intravesical infusion of MO. For all mice, the data were normalized to the average frequency obtained during saline infusion. These data is adapted from Everaerts et al. (ref 6), with permission from Elsevier.
The cystometry technique presented here allows performing in vivo measurements of bladder function in animal models. Rats are probably the most used animal model. Mice are more difficult to handle, but offer the advantage of using genetically manipulated animals. Because of the technical difficulty of using conscious mice, which tend to be very active resulting in loosening of the implanted catheter and changes in the intra-abdominal pressures that may influence the intravesical pressure, we advise to kee...
No conflicts of interest declared.
This work was supported by grants from the Belgian Federal Government (IUAP P6/28), the Research Foundation-Flanders (F.W.O.) (G.0565.07 and G.0686.09), the Astellas European Foundation Award 2009 and the Research Council of the KU Leuven (GOA 2009/07, EF/95/010 and PFV/10/006). P.U. and W.E. are doctoral fellows of the Research Foundation-Flanders (FWO). M.B. is a Marie Curie fellow. D.D.R. a fundamental-clinical fellow of the FWO.
Name | Company | Catalog Number | Comments |
urethane | Urethane, Sigma-Aldrich | 315419 | group 2B carcinogen |
isoflurane | Isoba, Schering-Plough Animal Health | ||
polyethylene catheter | Intramedic Polyethylene tubing PE50, Becton Dickinson | 427411 | |
surgical microscope | Op-Mi 6, Carl Zeiss | Op-Mi 6 | |
purse-string suture | Prolene 6/0, Ethicon | 8610H | |
fascia and skin suture | Ethilon 4/0 or 5/0, Ethicon | 662G or 661G | |
postoperative analgesics | Temgesic, Schering-Plough Animal Health | dosage for rats: 0.05 mg/kg | |
amplifier | 78534c monitor, Hewlett Packard | ||
analytical balances and balance data acquisition software | FZ 300i, A&D | FZ-300i | |
infusion pumps | pump 33, Harvard apparatus | HA33 | |
cystometry recording system | Dataq instruments, DI-730 series and Windaq/Lite | DI-730-USB Windaq/Lite | |
temperature registration | Fluke 52 KJ thermometer | 52 KJ | |
pressure transducers | Edwards Lifesciences, pressure monitoring set | T322247A |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone