Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol focuses on utilizing the inherent ability of stem cells to take cue from their surrounding extracellular matrix and be induced to differentiate into multiple phenotypes. This methods manuscript extends our description and characterization of a model utilizing a bilayered hydrogel, composed of PEG-fibrin and collagen, to simultaneously co-differentiate adipose-derived stem cells1.
Natural polymers over the years have gained more importance because of their host biocompatibility and ability to interact with cells in vitro and in vivo. An area of research that holds promise in regenerative medicine is the combinatorial use of novel biomaterials and stem cells. A fundamental strategy in the field of tissue engineering is the use of three-dimensional scaffold (e.g., decellularized extracellular matrix, hydrogels, micro/nano particles) for directing cell function. This technology has evolved from the discovery that cells need a substrate upon which they can adhere, proliferate, and express their differentiated cellular phenotype and function 2-3. More recently, it has also been determined that cells not only use these substrates for adherence, but also interact and take cues from the matrix substrate (e.g., extracellular matrix, ECM)4. Therefore, the cells and scaffolds have a reciprocal connection that serves to control tissue development, organization, and ultimate function. Adipose-derived stem cells (ASCs) are mesenchymal, non-hematopoetic stem cells present in adipose tissue that can exhibit multi-lineage differentiation and serve as a readily available source of cells (i.e. pre-vascular endothelia and pericytes). Our hypothesis is that adipose-derived stem cells can be directed toward differing phenotypes simultaneously by simply co-culturing them in bilayered matrices1. Our laboratory is focused on dermal wound healing. To this end, we created a single composite matrix from the natural biomaterials, fibrin, collagen, and chitosan that can mimic the characteristics and functions of a dermal-specific wound healing ECM environment.
1. Isolating Adipose-Derived Stem Cells (ASCs) 1, 5
Note: All procedures were performed at room temperature unless otherwise noted.
2. Preparing Chitosan Microspheres (CSMs)
Note: All procedures were performed at room temperature unless otherwise noted.
3. Determining the Number of Free Amino Groups in CSMs
Note: All procedures were performed at room temperature unless otherwise noted.
4. Loading ASC in CSM
Note: All procedures were performed at room temperature unless otherwise noted.
5. Determining the Percentage of ASC Loading and Cell Viability in CSMs
Note: All procedures were performed at room temperature unless otherwise noted.
6. Preparation and Characterization of ASC-CSM Embedded in PEG-fibrin Gels
Note: All procedures were performed at room temperature unless otherwise noted.
7. Preparation and Characterization of ASC-CSM Embedded in Collagen Gels
Note: All procedures were performed at room temperature unless otherwise noted.
8. Development of Bilayered PEG-fibrin-(ASC-CSM)-Collagen Gel Constructs
Note: All procedures were performed at room temperature unless otherwise noted.
9. Making Stock Solutions
Note: All procedures were performed at room temperature unless otherwise noted.
10. Representative Results
The overall goal of the technique presented here is to demonstrate the potential of simultaneous matrix-driven differentiation of ASC into multiple phenotypes using CSM as a delivery vehicle. We demonstrate an in vitro strategy to deliver stem cells from CSMs into a bilayered collagen-PEG-fibrin scaffold. Characterization of ASC embedded within this scaffold revealed that ASC-loaded CSMs can be "sandwiched" in between a layer of collagen and PEG-fibrin simultaneously and differentially take cue from both extracellular environments to thrive under their new conditions. We first characterized the ability for the model system to maintain cell viability and migratory capacities. Collagen supported the ability of ASCs to maintain their "stemness," as was demonstrated by their expression of Stro-1 and their fibroblast-like morphology (Figure 2D and 2F). In contrast, PEG-fibrin induced the ASCs to differentiate toward a vascular phenotype, as is demonstrated by their tube-like structure morphology, their endothelial cell-specific expression of von Willebrand factor (Figure 2E and 2G), and pericyte-specific expression of NG2 and platelet-derived growth factor receptor beta (PDGFRβ) (data not shown). Furthermore, these observed phenotypes appeared to occur early in culture and were maintained over 11 days, as is demonstrated in Figure 3.
Tables and Figures
Benefits of Bilayer Construct:
Figure 1. Schematic depicting the overall goal and process of the technique. 1) Adipose-derived stem cells (ASCs) are loaded onto chitosan microspheres. 2) Collagen is then poured into a 6-well insert, the pH adjusted to fibrillate the collagen, and the insert placed into a 6-well plate chamber. The ASC-loaded CSM spheres are then layered over the collagen. 3) The PEGylated fibrinogen is then poured over the collagen (ASC-CSM) and gelled by the addition of thrombin. 4) The final bilayer construct can then be removed from the culture insert and used for in vitro or in vivo analysis.
Figure 2. Characterization of ASC cultured within collagen and PEG-fibrin 3D matrices. A) Phase-contrast photomicrograph of isolated ASC passaged and maintained using routine 2-dimensional cell culture techniques. Photomicrographs B, D, and F depict ASC-CSM cultured within a 3-dimensional collagen gel; whereas C, E, and G show ASC-CSM cultured within a 3-dimensional PEG-fibrin gel, both at day 12. In B and C), ASCs are shown migrating away from the CSM sphere in both scaffold types. ASCs appear to have a flattened, spindle-like morphology in collagen (B), while maintaining their expression of the stem cell marker Stro-1 (D; arrow). When cultured in PEG-fibrin ASCs exhibit more tube-like structures and are induced to express such vascular cell markers as von Willebrand Factor (E). Transmission electron microscopy depicts the typical morphology demonstrated by ASCs within each scaffold. ASCs in collagen gel appear to have smaller filopodia (fl) extending from the body of the cell (F), whereas ASCs typically formed lumenal (labeled L) structures (G; arrow).
Figure 3. Morphological analysis of ASC-CSMs between bilayers of collagen and PEG-fibrin gels. ASC-CSMs were "sandwiched" between collagen and PEG-fibrin gels and maintained in culture for 11 days. The left column depicts ASCs migrating and proliferating within the collagen matrix and appear to take on a spindle-like morphology. The right column depicts ASCs migrating away from the CSMs and forming tube-like structures throughout the PEG-fibrin gel.
ASCs are well-known for their ease of isolation and ability to differentiate toward various cell types. With the techniques described in this manuscript, we are able to exploit the plasticity of ASCs by exposing these cells to multiple biomatrices simultaneously. As cells migrate away from their CSM base and enter their surrounding extracellular environment, the cells take cue from the scaffold and can either maintain "stemness" (collagen) or be induced to differentiate toward vascular- and vascular-supportive cell types...
No competing financial interests exist.
Disclaimers
The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of Defense or the U.S. Government. The authors are employees of the U.S. Government, and this work was prepared as part of their official duties. All work was supported by the U.S. Army Medical Research and Materiel Command. This study was conducted under a protocol reviewed and approved by the U.S. Army Medical Research and Materiel Command Institutional Review Board and in accordance with the approved protocol.
S.N. was supported by a Postdoctoral Fellowship Grant from the Pittsburgh Tissue Engineering Initiative. D.O.Z. is supported by a grant awarded from The Geneva Foundation.
Name | Company | Catalog Number | Comments |
Hanks Balanced Salt Solution (HBSS) | GIBCO, by Life Technologies | 14175 | Consumable |
Fetal Bovine Serum | Hyclone | SH30071.03 | Consumable |
Collagenase Type II | Sigma-Aldrich | C6685 | Consumable |
70-μm Nylon Mesh Filter | BD Biosciences | 352350 | Consumable |
100-μm Nylon Mesh Filter | BD Biosciences | 352360 | Consumable |
MesenPRO Growth Medium System | Invitrogen | 12746-012 | Consumable |
L-Glutamine | GIBCO, by Life Technologies | 25030 | Consumable |
CaCl2.2H2O | Sigma-Aldrich | C8106 | Consumable |
T75 Tissue Culture Flask | BD Biosciences | 137787 | Consumable |
Chitosan | Sigma-Aldrich | 448869 | Consumable |
Acetic Acid | Sigma-Aldrich | 320099 | Consumable |
N-Octanol | Acros Organics | 150630025 | Consumable |
Sorbitan-Mono-Oleate | Sigma-Aldrich | S6760 | Consumable |
Potassium Hydroxide | Sigma-Aldrich | P1767 | Consumable |
Acetone | Fisher Scientific | L-4859 | Consumable |
Ethanol | Sigma-Aldrich | 270741 | Consumable |
Trinitro Benzenesulfonic Acid | Sigma-Aldrich | P2297 | Consumable |
Hydrochloric Acid | Sigma-Aldrich | 320331 | Consumable |
Ethyl Ether | Sigma-Aldrich | 472-484 | Consumable |
8-μm Tissue Culture Plate Inserts | BD Biosciences | 353097 | Consumable |
1.5-ml Microcentrifuge Tubes | Fisher Scientific | 05-408-129 | Consumable |
MTT Reagent | Invitrogen | M6494 | Consumable |
Dimethyl Sulfoxide | Sigma-Aldrich | D8779 | Consumable |
Qtracker Cell Labeling Kit(Q Tracker 655) | Molecular Probes, Life Technologies | Q2502PMP | Consumable |
Type 1 Collagen | Travigen | 3447-020-01 | Consumable |
Sodium Hydroxide | Sigma-Aldrich | S8045 | Consumable |
12-Well Tissue Culture Plates | BD Biosciences | 353043 | Consumable |
Fibrinogen | Sigma-Aldrich | F3879 | Consumable |
Thrombin | Sigma-Aldrich | T6884 | Consumable |
Benztriazole Derivative of Polyethylene | Sunbio | DE-034GS | Consumable |
Tris Buffer Tablet (pH 7.6) | Sigma-Aldrich | T5030 | Consumable |
Centrifuge | Eppendorf | 5417R | Equipment |
Orbital Shaker | New Brunswick Scienctific | C24 | Equipment |
Humidified Incubator with Air-5% CO2 | Thermo Fisher Scientific, Inc. | Model 370 | Equipment |
Overhead Stirrer | IKA | Visc6000 | Equipment |
Magnetic Stirrer | Corning | PC-210 | Equipment |
Vacuum Desiccator | - | - | Equipment |
Particle Size Analyzer | Malvern Instruments | STP2000 Spraytec | Equipment |
Water Bath | Fisher Scientific | Isotemp210 | Equipment |
Spectrophotometer | Beckman Coulter Inc. | Beckman Coulter DU 800UV/Visible Spectrophotometer | Equipment |
Vortex | Diagger | 3030a | Equipment |
Microplate Reader | Molecular Devices | SpectraMax M2 | Equipment |
Light/Fluorescence Microscope | Olympus Corporation | IX71 | Equipment |
Confocal Microscope | Olympus Corporation | FV-500 Laser Scanning Confocal Microscope | Equipment |
Scanning Electron Microscope | Carl Zeiss, Inc. | Leo 435 VP | Equipment |
Transmission Electron Microscope | JEOL | JEOL 1230 | Equipment |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone