Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We present a method to collect cerebrospinal fluid (CSF) and to create a system which lacks CSF within the embryonic zebrafish brain ventricular system. This allows for further examination of CSF composition and its requirement during embryonic brain development.
Cerebrospinal fluid (CSF) is a protein rich fluid contained within the brain ventricles. It is present during early vertebrate embryonic development and persists throughout life. Adult CSF is thought to cushion the brain, remove waste, and carry secreted molecules1,2. In the adult and older embryo, the majority of CSF is made by the choroid plexus, a series of highly vascularized secretory regions located adjacent to the brain ventricles3-5. In zebrafish, the choroid plexus is fully formed at 144 hours post fertilization (hpf)6. Prior to this, in both zebrafish and other vertebrate embryos including mouse, a significant amount of embryonic CSF (eCSF) is present . These data and studies in chick suggest that the neuroepithelium is secretory early in development and may be the major source of eCSF prior to choroid plexus development7.
eCSF contains about three times more protein than adult CSF, suggesting that it may have an important role during development8,9. Studies in chick and mouse demonstrate that secreted factors in the eCSF, fluid pressure, or a combination of these, are important for neurogenesis, gene expression, cell proliferation, and cell survival in the neuroepithelium10-20. Proteomic analyses of human, rat, mouse, and chick eCSF have identified many proteins that may be necessary for CSF function. These include extracellular matrix components, apolipoproteins, osmotic pressure regulating proteins, and proteins involved in cell death and proliferation21-24. However, the complex functions of the eCSF are largely unknown.
We have developed a method for removing eCSF from zebrafish brain ventricles, thus allowing for identification of eCSF components and for analysis of the eCSF requirement during development. Although more eCSF can be collected from other vertebrate systems with larger embryos, eCSF can be collected from the earliest stages of zebrafish development, and under genetic or environmental conditions that lead to abnormal brain ventricle volume or morphology. Removal and collection of eCSF allows for mass spectrometric analysis, investigation of eCSF function, and reintroduction of select factors into the ventricles to assay their function. Thus the accessibility of the early zebrafish embryo allows for detailed analysis of eCSF function during development.
1. Preparing Microinjection Needles and Cell Tram
2. Preparing the Embryos
3. Draining the eCSF
4. Collecting the eCSF for Composition Analysis
5. Reintroduction of Selected Factors
An example of a drained brain ventricle is shown in Figure 1B-C. Brain ventricles are collapsed as they lack eCSF (Figure 1B vs. C). As seen in dorsal images (Figure 1B-C, and Figure 2A-D) the hindbrain neuroepithelium does retain its characteristic morphology and seems to be open despite lack of eCSF likely due to robust hinge-points. However, lateral views (Figure 2A'-D') demonstrate that the hindbrain ventricle has been drained, consi...
Use of this technique to manually drain eCSF from zebrafish brain ventricles will be useful for determining the requirement for eCSF during development. In addition, this technique will allow description of the eCSF protein profile over the course of embryonic development. Identification of different proteins during this time will enable further investigation into the function of the CSF and its potential role during brain development. In amniotes, some factors identified in eCSF (IGF2, FGF2, retinoic acid, and apolipop...
No conflicts of interest declared.
This work was supported by the National Institute for Mental Health, and National Science Foundation. Special thanks to Dr. Jen Gutzman, Dr. Amanda Dickinson and other Sive lab members for many useful discussions and constructive criticism, and to Olivier Paugois for expert fish husbandry.
Name | Company | Catalog Number | Comments |
Eppendorf CellTram Oil | Eppendorf | 516 000.025 | |
Mineral Oil | Sigma | M8410 | |
Tricaine powder | Sigma | A5040 | |
Capillary Tubes | FHC Inc. | 30-30-1 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone