Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Dual camera emission splitting systems for two-color fluorescence microscopy generate real-time image sequences with exceptional optical and temporal resolution, a requirement of certain live cell assays including parallel plate flow chamber adhesion assays. When software is employed to merge images from simultaneously acquired emission channels, pseudocolored image sequences are produced.
Multi-color immunofluorescence microscopy to detect specific molecules in the cell membrane can be coupled with parallel plate flow chamber assays to investigate mechanisms governing cell adhesion under dynamic flow conditions. For instance, cancer cells labeled with multiple fluorophores can be perfused over a potentially reactive substrate to model mechanisms of cancer metastasis. However, multi-channel single camera systems and color cameras exhibit shortcomings in image acquisition for real-time live cell analysis. To overcome these limitations, we used a dual camera emission splitting system to simultaneously capture real-time image sequences of fluorescently labeled cells in the flow chamber. Dual camera emission splitting systems filter defined wavelength ranges into two monochrome CCD cameras, thereby simultaneously capturing two spatially identical but fluorophore-specific images. Subsequently, psuedocolored one-channel images are combined into a single real-time merged sequence that can reveal multiple target molecules on cells moving rapidly across a region of interest.
Methods for analysis of molecules on the cell surface, such as immunostaining, employ probes that are chemically conjugated to fluorophores, allowing detection of target molecules. Live cell imaging and hydrodynamic flow-based cell adhesion assays are typically recorded with monochrome CCD cameras designed to capture physiological processes at the cellular and/or molecular level 1, 2. These cameras are highly sensitive, deliver fast frame rates (greater than 30 frames per second), and provide exceptional temporal resolution (due to fast frame rates and short exposure times). However, monochrome cameras can only capture a single emission channel (detecting a single fluorophore) to collect images. Single camera emission splitting systems can be incorporated to capture multiple emission channels but often reduce the field of view and require the same exposure time for imaging all channels. To capture the full color spectrum from cells labeled with multiple fluorophores, a color camera can be used as an alternative. However, color cameras are not generally capable of providing the temporal resolution desired for live cell imaging in certain applications. Another imaging device is needed for applications in which it is advantageous to image live cells at multiple wavelengths while retaining a high temporal resolution. A prime experimental application is the parallel plate flow chamber adhesion assay, in which cells are perfused at physiologically relevant conditions over a potentially reactive substrate 1, 3. Cells in flow that express specific cell surface molecules may adhere and roll on the substrate, such as a cell monolayer expressing adhesion molecules or surface-adsorbed extracellular matrix proteins 4, 5. Rolling cells may undergo rotational and translational movement in fractions of a second. Molecular features on rolling and adherent cells, such as clusters of cell surface molecules, also have the potential to undergo active reorganization on the cell surface. Thus, imaging systems must provide an exceptional temporal resolution (30 frames per second or greater and "near zero" exposure times) to generate an image sequence that illustrates the step-by-step progression of cell rolling 6, 7. Dual camera emission splitting systems are capable of meeting these demands for imaging cells labeled with multiple fluorophores.
Dual camera emission splitting systems split and filter fluorescence channels into two similar cameras to simultaneously capture two spatially identical but fluorophore-specific images while retaining the full field of view. This technology enables direct comparison of the image captured in real-time in each channel and allows the user to quickly switch between camera models with different imaging capabilities. This feature is useful for making adjustments to image capture settings in one camera that better allow the system to capture fluorophores with different intensities, lifetimes, and extinction coefficients 8. Coupled with imaging software, dual camera emission splitting systems allow the real-time recording of live cell imaging assays in multiple wavelengths and may enhance in vitro assays that use fluorescence to study cell behavior.
1. Software Installation
2. Installation of Dual Camera System Capable of Two Color Simultaneous Real-time Imaging
3. Preparation of Cancer Cells for Parallel Plate Flow Chamber Adhesion Assay
4. Preparation of Reactive Substrate for Parallel Plate Flow Chamber Adhesion Assay
5. Two-color Image Acquisition
A parallel plate flow chamber adhesion assay was used to demonstrate a dual camera emission splitting system that simultaneously captured real-time image sequences in two emission channels (Figure 1). The dual camera emission splitting system detected BT-20 cells that were fluorescently labeled with anti-human CD24 and HECA-452 (detecting sialofucosylated antigens) monoclonal antibodies and appropriate secondary antibodies (Figure 2). Some rolling cells displayed red signals (CD24) yet u...
The dual camera emission splitting system has the spatial, temporal, and optical resolution needed to capture high quality images in applications where cell or molecular movement is rapid. In generating the representative results, parameters in the dual camera emission splitting system, including software settings and camera settings, were optimized to obtain a merged image sequence in which rolling and adherent cells were spatially and temporally aligned. This optimization step is critical, as misalignment can result in...
The authors declare that they have no competing financial interests.
The authors wish to thank Dr. Douglas Goetz (Department of Chemical and Biomolecular Engineering, Ohio University) and Dr. Fabian Benencia (Department of Biomedical Sciences, Ohio University) for insightful discussions and manuscript review. We also thank Dr. Christopher Huppenbauer for helpful technical discussions (W. Nuhsbaum Inc.). This work was supported by grants from the National Science Foundation (CBET-1106118) and the National Institutes of Health (1R15CA161830-01).
Name | Company | Catalog Number | Comments |
Reagent/Material | |||
BT-20 cells | ATCC | HTB-19 | |
CHO-E cells | Gift from Dr. R. Sackstein (Brigham and Women's Hospital, Harvard Medical School) | ||
MEM | Thermo Scientific | SH30024.01 | |
FBS | Thermo Scientific | SH30396.03 | |
Penicillin-streptomycin | Thermo Scientific | SV30010 | |
0.25% Trypsin / 0.1% EDTA | Thermo Scientific | SV30031.01 | |
DPBS | Thermo Scientific | SH30028.02 | |
DPBS+ | Life Technologies | 14080-055 | |
BSA | Sigma | A9647 | |
HECA-452 monoclonal antibody | BD Biosciences | 555946 | |
Anti-human CD24 monoclonal antibody | BD Biosciences | 555426 | |
Anti-rat IgM AlexaFluor 488 | Invitrogen | A21212 | |
Anti-mouse IgG AlexaFluor 568 | Invitrogen | A11004 | |
[header] | |||
Equipment | |||
EXi Blue Fluorescence Microscopy Digital CCD Camera | Q Imaging | EXI-BLU-R-F-M-14-C | |
Retiga EXi FAST 1394 Digital CCD Camera | Q Imaging | RET-EXi-F-M-12-C | |
DC2 Emission Splitter | Photometrics | DC2 | |
Inverted Fluorescence Microscope | Leica | DMI6000 B | |
Streampix 5 software | Norpix |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone