Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
DNBS/TNBS induced colitis offers an alternative and inexpensive method to study the pathobiology of inflammatory bowel disease. The protocol discussed in this paper outlines the successful application of DNBS to induce colitis in mice and rats and allows one to thoroughly study host-mediated intestinal responses.
Inflammatory Bowel Diseases (IBD), including Crohn's Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.
Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation in the gastro-intestinal (GI) tract, resulting in symptoms of diarrhea, weight loss, and abdominal pain. Ulcerative colitis (UC) and Crohn's disease (CD) are the two major forms of IBD, and can be distinguished by the location of the inflammation within the GI tract. In UC patients, the inflammation typically involves the rectum and extends contiguously up the colon for a variable extent affecting only the superficial mucosa. In contrast, CD can affect any part of the GI tract, although it predominantly affects the ileum and cecum. CD frequently manifests as transmural inflammation often associated with granulomas and leading to stricturing (fibrostenotic) and/or penetrating (fistulizing) disease. Although the etiology of IBD remains elusive, it is well accepted that IBD is multifactorial, involving interactions among the hosts immune system, genetic susceptibility and responses to environmental and microbial factors.
To date, different models of IBD have been proposed that display various clinical, histological and immune responses characteristic of UC and CD. The most commonly used models include genetically modified mice (IL-2, IL-10, SAMP/Yit), infection induced models (Citrobacter rodentium, Salmonella typhimurium), adoptive transfer models (CD45+ RB High, CD62L+ cell transfer into SCID mice) and chemically induced colitis models (Dextran Sodium Sulfate (DSS), Trinitrobenzene sulfonic acid (TNBS), and Dinitrobenzene sulfonic acid (DNBS)). Owing to their low cost and rapid onset of disease, chemical models are considered invaluable to the study of various aspects of IBD. Each of the chemical colitis models listed has advantages as well as limitations in some aspects of their clinical, immunological and histopathological relevance to IBD. DSS is one of the most common chemical methods employed to induce colitis in rodents1. Administration of 3-10% DSS (MW: 42 kDa) for 7-10 days in the drinking water of mice can induce symptoms and signs of colitis including weight loss, diarrhea with blood, colonic shortening, mucosal ulceration and neutrophil infiltration. This model is particularly useful for drug screening studies, as well as exploring the mechanisms of epithelial regeneration, the impact of innate immunity on mucosal homeostasis, and the role of inflammation in promoting intestinal dysplasia and adenocarcinoma development. There are however some drawbacks to the DSS model, including variation in the concentration of DSS needed to induce colitis in different animal facilities, as well as inconsistent water uptake by mice and thus inconsistent exposure to DSS, resulting in variation in the degree, extent and distribution of mucosal injury and ulceration in the colon. All these features lead to heterogeneity of results and limit the ability to compare results across studies from different research groups.
An alternative to the DSS model is the hapten-induced DNBS or TNBS models of colitis. This model employs rectal instillation of the mucosal sensitizing agents DNBS or TNBS, diluted in varying concentrations of ethanol. The administration of ethanol is a prerequisite to break the colonic mucosal barrier to allow penetration of DNBS or TNBS into the lamina propria. DNBS/TNBS will then haptenize the localized colonic and gut microbial proteins to become immunogenic, thereby triggering the host innate and adaptive immune responses. In general, this model is associated with severe and sometimes bloody diarrhea, weight loss and intestinal wall thickening however symptoms vary depending upon the type of rodent used, as well as the timing, dose and degree of exposure to the DNBS or TNBS used in the study. Important distinctions between rats and mice should be noted, with the benefits of lower cost for purchase and board, as well as lower body mass for decreasing per-animal costs of treatment in vivo. This should be set against the more rapid and severe course of colitis in mice, where the more fragile and responsive animals may quickly reach a humane endpoint.
The intestinal inflammation initially results from ethanol induced damage to intestinal epithelial cells, leading to increased epithelial permeability, microbial penetration into the mucosa, haptenization of host proteins, all of this resulting in infiltration of neutrophils, macrophages and Th1 T lymphocytes into the damaged mucosa. In comparison to DNBS, TNBS is considered as a hazardous chemical due to its highly oxidative properties that can pose a risk of explosion upon contact with bases such as sodium and potassium hydroxide. Therefore DNBS is currently regarded as a preferred choice of chemical over TNBS to induce colitis. In rodents, DNBS colitis is considered as one of the most convenient methods to study the following IBD associated modifiers of disease:
In comparison with the DSS model, the advantages of DNBS and TNBS-induced colitis include low cost, rapid development of colitis (usually requires 1-3 days to show reproducible ulceration and inflammation) and consistent localized damage to the distal colon. However the drawbacks are a requirement for a greater level of technical expertise, optimization of DNBS/ TNBS dose, and the need for anesthesia for rectal administration.
In this methodological paper we studied the effects of varying concentrations of n-6 and n-3 polyunsaturated fatty acids on altering the colonic mucosal response to DNBS-induced colitis in rats using the vegetable oils safflower oil (SO) and canola oil (CO), and fish oil (FO). It has been shown that n-6 and n-3 fatty acids are important mediators of intestinal inflammatory disease through their role as acyl moieties of cell membrane phosopholipids9. In contrast to the proinflammatory potential of n-6 fatty acids, n-3 fatty acids at sufficiently high intake are potentially potent anti-inflammatory agents. The anti-inflammatory actions of n-3 fatty acids are mediated directly through replacement of arachidonic acid as an eicosanoid substrate, inhibiting arachidonic acid metabolism and indirectly through alteration of proinflammatory gene expression and cell signaling. The n-3 fatty acids also give rise to resolvins, a family of anti-inflammatory mediators. High intake of n-3 fatty acids is associated with a decrease in production of proinflammatory eicosanoids, cytokines, chemokines, reactive oxygen species and expression of adhesion molecules. In this study, rats were fed ad libitum diets identical in all nutrients except fatty acids, with as a percent energy from fat, 20% SO, 20% CO, or 18% fish oil plus 2% safflower oil (FO)10-11. As a percentage of the daily energy, the SO diet provided 15% linoleic acid (LA), with <0.06% α-linolenic acid (ALA) and no eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), the CO diet had 4.2% LA and 1.9% ALA with no EPA or DHA, and the FO diet provided 1.4% EPA, 4.9% DHA, 0.32% LA, and 0.12% ALA. Three weeks after initiation of the lipid diets, the mice were administered intrarectal DNBS or 50% ethanol and sacrificed 5 days later. The inflammatory response was evaluated by assessment of weight loss, histological damage scores and tissue myeloperoxidase activity.
Procedures involving animal subjects follow animal care guidelines outlined by the Institutional Animal Care and Use Committee (IACUC) at the University of British Columbia.
Procedures mentioned in this protocol will be described for both rats and mice, while the representative results will be presented from Sprague-Dawley rats.
1. Preparation of DNBS and Intrarectal Administration
2. Collecting Tissues and Assessing Histological Damage in DNBS Challenged Mice
3. Performing Myeloperoxidase (MPO) Assay on DNBS Challenged Intestinal Tissue
Challenge of rats (Sprague-Dawley) or mice (C57BL/6) with DNBS typically results in transient weight loss and diarrhea, sometimes with blood present in the stool. However, factors such as genetics, diet and the intestinal microbiota can modify susceptibility to DNBS induced colitis. Therefore, animals included in the experiments should be from the same institution, either derived locally or ordered in from one animal supplier. All animals should be carefully monitored for the degree of weight loss and symptoms of distres...
The DNBS model described in this protocol is a valuable, inexpensive, and reproducible colitis model that can be utilized to study various aspects of IBD. When administered intrarectally to rats or mice, DNBS induces a substantial degree of inflammation and tissue injury in the colon, resembling human Crohn's disease in terms of its various histological features including transmural infiltration of polymorphonuclear cells and predominant NF-κB-dependent Th1 activation.
This model has ...
The authors declare that they have no competing financial interests.
This work was supported by operating grants to KJ from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Crohn's and Colitis Foundation of Canada (CCFC). VM is supported by a CFRI Fellowship and GB a graduate studentship from the Canadian Institutes for Health Research (CIHR). BAV is a Children with Intestinal and Liver Disorders Foundation (CHILD) Chair of Pediatric IBD Research and the Canada Research Chair in Pediatric Gastroenterology and KJ is a Senior Clinician Scientist supported by CHILD and the Child and Family Research Institute (CFRI) Clinician Scientists Award Program, University of British Columbia.
Name | Company | Catalog Number | Comments |
1 ml Syringe | BD Biosciences | 309659 | |
19 G Needle | BD Biosciences | 305187 | |
Polyethylene tubing PE-50 | BD Biosciences | 427517 | for intrarectal administration in mice |
Polyethylene tubing PE-90 | BD Biosciences | 427519 | for intrarectal administration in rat |
DNBS | MP Bio | 150959 | |
Tear gel | Novartis | 63601662596 | |
10% Formalin | Fisher | 5F93-4 | |
Warming pad | Kent Scientific | TPZ-0510 | |
Ethanol | Fisher | A-962.4 | |
Hexadecyltrimethyl-ammonium bromide | Sigma-Aldrich | H5882 | |
Potassium phosphate buffer solution | Sigma-Aldrich | 79628- | |
o-Dianisidine dihydrochloride | Sigma-Aldrich | D3252 | |
30% H2O2 | Sigma-Aldrich | 31642 | hydrogen peroxide |
Spectrophotometer | BioRad | Benchmarker Plus | |
Light Microscope | Zeiss | Axio Image.Z1 | |
Data analysis software program | GraphPad Software | GraphPad Prism Software Version 4.00 | www.graphpad.com |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone