Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This study presents a detailed experimental procedure to measure looping dynamics of double-stranded DNA using single-molecule Fluorescence Resonance Energy Transfer (FRET). The protocol also describes how to extract the looping probability density called the J factor.
Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.
Understanding the mechanical properties of dsDNA is of fundamental importance in basic sciences and engineering applications. The structure of dsDNA is more complicated than a straight helical ladder because roll, tilt, and twist angles between successive base pairs can vary with sequence. Thermal fluctuations can cause dsDNA to undergo diverse modes of conformational fluctuations such as bending, twisting and stretching. Transitions such as melting and kinking can also occur in extreme conditions.
Among these motions, dsDNA bending has the most noticeable biological impact1. dsDNA bending is associated with gene repression or activation by bringing two distant sites close to each other. It also plays an important role in DNA packaging inside the cell nucleus or a viral capsid. Bending deformation of dsDNA can be visualized experimentally by high-resolution microscopy (AFM2 and TEM3), and the thermodynamics and kinetics can be studied by looping assays, which chemically link juxtaposed sites of the dsDNA.
One such assay is ligase-dependent cyclization4. In this assay, dsDNA molecules with ‘sticky’ (cohesive) ends are circularized or dimerized by DNA ligase. By comparing the rates of circle and dimer formation, one can obtain an effective molar concentration of one end of the DNA in the vicinity of the other end, which is known as the J factor. This J factor is dimensionally equivalent to the probability density of finding one end of the DNA at a short distance from the other end, and thus reflects the flexibility of the DNA. Measuring the J factor as a function of DNA length reveals many characteristics about DNA mechanics including the persistence length4,5.
The worm-like chain (WLC) model has been widely regarded as the canonical polymer model for dsDNA mechanics based on its success in explaining the force-extension curves obtained in DNA pulling experiments6, and correctly predicting the J factors of dsDNAs longer than 200 bp7. However, using the cyclization assay on dsDNA molecules as short as 100 bp, Cloutier and Widom measured the J factors to be several orders of magnitude higher than the WLC model prediction8. A year later, Du et al. produced J factors in agreement with the WLC model using the cyclization assay with lower concentrations of ligase and attributed the anomalous result from the Widom group to high ligase concentrations used9. This controversy exemplifies the unavoidable influence of DNA ligase on cyclization kinetics when using the conventional assay9. Moreover, DNA ligase can also affect DNA structure and stiffness through nonspecific binding10,11.
To eliminate the technical concerns of protein-dependent looping assays, we recently demonstrated a protein-free looping assay based on Fluorescence Resonance Energy Transfer (FRET)12. In this method, looped conformations are detected by FRET between the donor and acceptor attached near the sticky ends of a DNA molecule. An objective-type total internal reflection fluorescence microscope (TIRFM) is used to record trajectories of reversible looping and unlooping events from surface-immobilized single DNA molecules for a prolonged period of time. This method features PCR-based assembly of DNA molecules to generate mismatch-free DNA molecules, which is a crucial improvement over a similar method by Vafabakhsh and Ha13. The single-molecule aspect of this protocol allows measurement of distributions in addition to ensemble averages while the FRET aspect allows one to measure DNA looping dynamics repeatedly from the same molecule, even in conditions that can impair ligase activity.
The TIRFM setup is shown in Figure 1. A custom-designed specimen stage is placed over an Olympus IX61 microscope body. 532 nm and 640 nm lasers are introduced from the side and are reflected by tiny elliptical mirrors14 into the high NA objective to achieve critical angle of incidence at the coverslip-water interface. We note that more widespread through-objective TIR using dichroic mirrors or prism-based TIR setups can also be used for this FRET application. The fluorescence image formed by the microscope is split into donor and acceptor images by a dichroic mirror. They are then re-imaged onto two halves of an EMCCD. Additional long-pass emission filters are used to reduce background signal.
Temperature control is essential for acquiring reproducible kinetic data. For temperature control, the objective is separated from the nosepiece of the microscope body to minimize heat transfer, and water from a temperature controlled chiller/heater is circulated through a brass collar that tightly fits around the interior metal beneath the objective jacket. This setup is able to achieve robust temperature control at the coverslip surface between 15 and 50 °C (Figure 2). In this work, the sample temperature was maintained at 24 °C.
The following protocol presents the step-by-step procedure for DNA construction, estimation of DNA shape, single-molecule experiment, and J factor determination.
Access restricted. Please log in or start a trial to view this content.
1. dsDNA Sample Preparation
2. Gel Electrophoresis to Detect dsDNA Curvature
3. Flow Cell Preparation
4. Preparation of Trolox Solution
5. Single-molecule Imaging
6. Image Processing and Data Analysis
NOTE: A time series of 256 x 256 images are processed by a MATLAB code to generate single-molecule time traces of Cy3 and Cy5 intensities. To pair pixels between the donor channel and the acceptor channel of the split-view image, 6-7 pairs of Cy3 and Cy5 spots, each pair from the same molecule evenly dispersed across the field of view, are manually picked, and an affine transformation is calculated using the coordinates of these spots as anchor points.
7. Determining the J Factor
NOTE: The J factor represents how concentrated one end of a dsDNA is around the other end. It can be determined by interpolating the concentration of one end segment of the DNA that would produce the same reaction rate with the other end segment as the measured looping rate. Experimentally, one end segment is immobilized on the surface, and the other end segment is introduced at a certain concentration c. If the measured annealing rate between the two ends is kanneal, then the J factor21 is given by . The annealing rate constant ( kanneal = kanneal / C ) is independent of the probe concentration.
Access restricted. Please log in or start a trial to view this content.
DNA molecules used for the looping study consist of a duplex region of variable sequence and length and single-stranded overhangs that are complementary to each other. The overhangs, which are 7-base long, can anneal to each other to capture the looped state. Each overhang contains either Cy3 or Cy5 that is linked in the DNA backbone through amidite chemistry. The Cy5-overhang is also linked with biotin-TEG (15-atom Tetra-Ethylene Glycol spacer) for surface immobilization (see Figure 4A). All these modif...
Access restricted. Please log in or start a trial to view this content.
A simple single-molecule assay based on FRET was used to study looping kinetics of DNAs of different intrinsic shapes. Curved DNAs can be prepared by repeating a 10-mer sequence in phase with the helical period of 10.5 bp, and their curvatures can be estimated using PAGE. These dsDNAs are designed with sticky ends to allow transient loop stabilization. We extracted the looping rate from the exponential rise in the number of looped molecules over time. The annealing rate constant between the disconnected sticky end segmen...
Access restricted. Please log in or start a trial to view this content.
The authors declare no conflicts of interest.
We thank James Waters, Gable Wadsworth and Bo Broadwater for critically reading the manuscript. We also thank four anonymous reviewers for providing useful comments. We acknowledge financial support from Georgia Institute of Technology, the Burroughs Wellcome Fund Career Award at the Scientific Interface, and the student research network grant from NSF Physics of Living Systems.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Small DNA FRAG Extract Kit-100PR | VWR | 97060-558 | |
Acrylamide 40% solution 500 ml | VWR | 97064-522 | |
Bis-acrylamide 2% (w/v) solution 500 ml | VWR | 97063-948 | |
GeneRuler 100 bp DNA Ladder, 100-1,000 bp | Fermentas | SM0241 | |
Mini Vertical PAGE System | VWR | 89032-300 | |
Syringe filter 0.2 μm CS50 | VWR | A2666 | |
Trolox | Sigma-Aldrich | 238813-1G | triplet state quencher |
Protocatechuic acid (PCA) | Sigma-Aldrich | 08992-50MG | oxygen scavenging system |
Protocatechuate 3,4-Dioxygenase (PCD) | Sigma-Aldrich | P8279-25UN | oxygen scavenging system |
mPEG-silane, MW 2,000 1 g | Laysan Bio | MPEG-SIL-2000-1g | |
Biotin-PEG-Silane, MW 3,400 | Laysan Bio | Biotin-PEG-SIL-3400-1g | |
Avidin, NeutrAvidin Biotin-binding Protein | Invitrogen | A2666 | |
Phusion Hot Start High-Fidelity DNA Polymerase | New England Biolabs | F-540L | |
Gel/PCR DNA Fragments Extraction Kit | IBI Scientific | IB47020 | |
Premium plain glass microscope slides | Fisher Scientific | 12-544-1 | |
VWR micro cover glass, rectangular, no. 1 | VWR | 48404-456 | |
Fisher Scientific Isotemp 1006S Recirculating Chiller/Heater | Fisher Scientific | temperature control | |
Objective Cooling Collar | Bioptechs | 150303 | temperature control |
KMI53 Biological Micrometer Measuring Stage | Semprex | KMI53 | |
High Performance DPSS Laser 532 nm 50 mW | Edmund optics | NT66-968 | Cy3 excitation |
CUBE Fiber Pigtailed 640 nm, 30 mW, Fiber, FC/APC Connector | Coherent | 1139604 | Cy5 excitation |
650 nm BrightLine Dichroic Beamsplitter | Semrock | FF650-Di01-25x36 | splitting dichroic |
LaserMUX Beam Combiner, reflects 514.5, 532, & 543.5 nm lasers, 25 mm | Semrock | LM01-552-25 | combining dichroic |
Brightline Fluorescence Filter 593/40 | Semrock | FF01-593/40-25 | Cy3 emission filter |
635 nm EdgeBasic LWP longpass Filter, 25 mm | Semrock | BLP01-635R-25 | Cy5 emission filter |
EMCCD iXon+ | Andor Technology | DU-897E-CS0-#BV | |
IX51 inverted microscope frame | Olympus | ||
Objective UApo N 100X/1.49 Oil TIRF | Olympus | ||
Immersion oil type-F for fluorescence microscopy | Olympus | IMMOIL-F30CC | |
2 mm Diameter 45° Rod Lens Aluminum Coated | Edmund optics | 54-092 | miniature mirror |
1/4" Travel Single-Axis Translation Stage | Thorlabs | MS-1 | translation of miniature mirror |
Ø1" Achromatic Doublet, ARC: 400-700 nm, f=200 mm | Thorlabs | AC254-200-A | focusing lens |
Adjustable Mechanical Slit | Thorlabs | VA100 | |
Dielectric Mirror | Thorlabs | BB1-E02 | |
Ø1" Achromatic Doublet, f = 100 mm | Thorlabs | AC254-100-A | relay lens |
Lens Mount for Ø1" Optics | Thorlabs | LMR1 | |
Dichroic Filter Mount | Thorlabs | FFM1 | |
Fixed Cage Cube Platform | Thorlabs | B3C | |
Kinematic Mount for Ø1" Optics | Thorlabs | KM100 | |
N-BK7 Plano-Convex Lens, Ø1", f = 40 mm | Thorlabs | LA1422-A | collimating lens |
N-BK7 Plano-Convex Lense, Ø6.0 mm, f = 15 mm | Thorlabs | LA1222-A | telescope lens |
N-BK7 Plano-Convex Lense, Ø6.0 mm, f = 150 mm | Thorlabs | LA1433-A | telescope lens |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone