Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The Focus Formation Assay provides a straightforward method to assess the transforming potential of a candidate oncogene.
Malignant transformation of cells is typically associated with increased proliferation, loss of contact inhibition, acquisition of anchorage-independent growth potential, and the ability to form tumors in experimental animals1. In NIH 3T3 cells, the Ras signal transduction pathway is known to trigger many of these events, what is known as Ras transformation. The introduction of an overexpressed gene in NIH 3T3 cells may promote morphological transformation and loss of contact inhibition, which can help determine the oncogenic potential of that gene of interest. An assay that provides a straightforward method to assess one aspect of the transforming potential of an oncogene is the Focus Formation Assay (FFA)2. When NIH 3T3 cells divide normally in culture, they do so until they reach a confluent monolayer. However, in the presence of an overexpressed oncogene, these cells can begin to grow in dense, multilayered foci1 that can be visualized and quantified by crystal violet or Hema 3 staining. In this article we describe the FFA protocol with retroviral transduction of the gene of interest into NIH 3T3 cells, and how to quantify the number of foci through staining. Retroviral transduction offers a more efficient method of gene delivery than transfection, and the use of an ecotropic murine retrovirus provides a biosafety control when working with potential human oncogenes.
Tumor cells can be distinguished from their normal counterparts by a wide range of alterations, from patterns of gene expression to epigenomics to morphological and proliferative changes. Among the latter, reduced dependence on serum, loss of contact (density) inhibition, the acquisition of anchorage-independent proliferation and, ultimately, the ability to form tumors when injected into animals are useful, measurable indicators of malignant transformation3. Several in vitro and in vivo assays have been developed for cellular transformation. In vitro assays aim at identifying and measuring changes in culture morphology (focus formation assay), culture dynamics (growth rate, saturation density) and growth factor (growth in reduced serum) or anchorage (growth in soft agar) requirements. The gold standard for determining the malignant nature of a cell type remains tumor formation (xenografts) in experimental animals. However, the cost and length of in vivo studies do not always make them justifiable as a first validation step or screening of candidate oncogenes. Although no in vitro assay provides a definite assessment of the oncogenic potential of a gene, they do provide insight into oncogenic potential that may narrow down future in vivo studies. One of the most widely used systems for evaluating oncogenic potential in vitro is the Focus Formation Assay2. This approach relies on the use of NIH 3T3 mouse fibroblast, a non-transformed cell line that shows strong contact inhibition. Overexpression of an oncogene results in loss of density-dependent growth; transformed cells can then grow in multiple layers, forming “foci”, easily visualized against the background monolayer of non-transformed cells. The Focus Formation Assay, then, measures the ability of a candidate oncogene to induce malignant transformation, as evidenced by the loss of contact inhibition as a measurable phenotype. The FFA has been used to evaluate transformation by overexpression of protein kinases (e.g., Src4, BRAF5), transcription factors (e.g., N-myc6), G-protein-coupled receptors (e.g., P2RY87) and GTPases (e.g., Ras1), among others. The relative ease of this assay makes it a good choice that will provide a quick and visually clear answer to whether overexpression of the gene is sufficient to transform NIH 3T3 mouse fibroblast cells in vitro.
The FFA described in this protocol uses the Plat-E packaging cell line8, which provides viral packaging proteins, and the retroviral vector pBABEpuro9 (Addgene plasmid 1764) to produce retrovirus. After transfection with the pBABEpuro construct containing the gene of interest, the Plat-E cell line will produce ecotropic retrovirus that can be used to infect NIH 3T3 cells. This viral method of gene delivery is more efficient than traditional chemical transfection methods and it offers a way to sustainably express the gene10. Once incorporated into the genome of the NIH 3T3 cells, overexpression of the gene of interest is driven by the viral long terminal repeats (LTR) promoter11. This constant expression can be used to determine whether the gene of interest has oncogenic activity, as measured by the formation of foci, on the NIH 3T3 cells.
Access restricted. Please log in or start a trial to view this content.
1. Making the Viral Vectors
The coding sequences for the gene of interest, as well as the positive and negative controls, are inserted into pBABEpuro by traditional cloning methods (PCR amplification, restriction digestion and ligation). There are four restriction sites on the vector where the DNA can be inserted: BamHI, SnaBI, EcoRI and SalI.
2. Retrovirus Production
The Plat-E packaging cell line will be used to produce ecotropic retrovirus that will deliver the cDNA of interest to NIH 3T3 cells.
3. NIH 3T3 Cells and Infection
4. Staining and Quantification
Access restricted. Please log in or start a trial to view this content.
MXD3 is a basic helix-loop-helix leucine zipper (bHLHZ) transcription factor that is a member of the MYC/MAX/MAD network. It is an atypical member of the MAD family13-15, and it has been reported to be involved in carcinogenesis16,17. When compared to pBABEpuro (negative control) and MYC (positive control), the NIH 3T3 dishes where MXD3 was overexpressed had significantly less foci (Figure 1A). The data in Figure 1B were collected from multiple experiments to determ...
Access restricted. Please log in or start a trial to view this content.
The FFA provides a quick and easy method to evaluate malignant transformation in vitro. It is amenable to screening of a relatively large number of candidate genes, and its modest technical requirements make it cost-effective. Furthermore, two or more genes can be coexpressed (sometimes referred to as a “cooperation” assay) to evaluate the tumorigenic potential of the combination. The advantages of this assay rely on its straightforward technique, its ease of quantification and its relatively short t...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by a grant from the NIH Director's New Innovator Award Program (E.D.). A. A. was supported in part by undergraduate awards from the National Cancer Institute and the National Science Foundation.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
pBABE-puro vector | Addgene | Plasmid 1764 | cloning vector |
Platinum-E Retroviral Packaging Cell Line, Ecotropic | Cell Biolabs, Inc. | RV-101 | cell line for viral production |
NIH 3T3 Cell Line murine | Sigma-Aldrich | 93061524 | cell line for focus formation assay |
10 ml BD Luer-Lok tip syringe | BD Biosciences | 309604 | viral production reagent |
0.45 μm Puradisc Syringe Filter | Whatman | 6750-2504 | viral production reagent |
Polyethylenimine (PEI) | Polysciences, Inc. | 23966-2 | cell transfection reagent |
Polybrene Infection / Transfection Reagent | EMD Millipore | TR-1003-G | cell transfection reagent |
Crystal Violet | Fisher Scientific | C581-25 | cell stain reagent |
Plasmid Plus Midi Kit | QIAGEN | 12945 | plasmid purification |
BD Falcon Tissue Culture Dishes | BD Biosciences | 353003 | cell culture supplies |
Dulbecco's Modified Eagle Medium (DMEM) | Gibco | 11995-065 | cell culture media |
0.05% Trypsin-EDTA | Gibco | 25300-054 | cell culture supplies |
Opti-MEM I Reduced Serum Medium | Gibco | 31985-062 | cell culture media |
Fetal Bovine Serum (FBS) | Gibco | 16000-044 | cell culture media |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone