Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
A rapid bacterial pellet preparation from a positive blood culture can be used as a sample for applications such as identification by MALDI-TOF, Gram staining, antibiotic susceptibility testing and PCR-based test. The results can be rapidly communicated to clinicians to improve the outcome of patients suffering from bloodstream infections.
Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.
Bloodstream infections and sepsis in hospitalized patients are a major cause of morbidity and mortality. Thus, mortality related to bloodstream infections is observed in about 14% to 37% of hospitalized patient and may increase to 35% in intensive care units patients 1-3. The rapid identification of the infectious agent is pivotal to guide optimal antimicrobial treatment and to increase the successful outcome of antimicrobial therapy 4,5. The rapid analysis of Gram stains from positive blood culture has already a significant impact on the adaptation of antimicrobial therapy 6,7 but accurate identification of the infectious agent is required to provide the best adapted antibiotic treatment to the patients. For instance, different antibiotic treatment regimens have to be implemented following bacteremia with enterococci and streptococci that are difficult to distinguish by Gram staining. Similarly, identification at the species level is required to detect Gram negative enterobacteria encoding a chromosomal ampC gene which confer an increased resistance to β-lactams 8.
With a positive blood culture, the conventional diagnostic approach is to subculture the infectious agent on different agar plates, which requires several hours of additional incubation prior identification with various approaches including biochemical tests, growth on different selective media and automated microbial identification systems. The time to results of a conventional diagnostic approach is of about 1 to 3 days.
The emergence of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) technology for rapid identification of microorganisms has provided a new tool to quickly identify microorganisms from colonies grown on agar plates but also directly from positive blood cultures (Figure 1) 9-12. The use of MALDI-TOF to identify an infectious agent from blood cultures has significantly reduced the time to results to a few minutes instead of the hours and days required by traditional methods. As discussed by Croxatto et al. 13, the efficiency of MALDI-TOF identification relies on different parameters including the microorganism’s purity and quantity. These two criteria are easily obtained from discrete colonies grown on agar plates but required a pre-analytical treatment for bacterial enrichment and purification from complex samples such as blood culture, which contain multiple cellular and protein components that may interfere with MALDI-TOF identification.
Various microorganisms’ isolation methods from blood culture have been used in a number of studies including saponin or other mild detergents method for bacterial extraction 9,14, serum separator method 10, lysis centrifugation methods 12 and commercially solutions such as the sepsityper kit. Our bacteriology diagnostic laboratory has developed a simple blood-culture bacterial pellet preparation based on ammonium chloride erythrocyte-lysis which allow fast identification of bacteria and yeast by MALDI-TOF and automated identification systems (Figure 2) 15. This blood-culture pellet preparation also provide a sample for other direct downstream applications such as Gram staining, automated PCR-based diagnostic tests such as POCT-PCRs for the rapid detection of methicillin-resistant Staphyloccocus aureus (MRSA), and antibiotic susceptibility testing with automated AST systems and/or by disk diffusion assays on agar plates (Figure 3).
In this work, we describe the different steps for the preparation of the blood-culture bacterial pellet as explained by Prod’hom et al.15 (Figure 4). We will also describe the protocols for three of the main applications that can be performed on the blood culture pellet: Identification by MALDI-TOF 15, identification (ID) and antibiotic susceptibility testing (AST) with the automated systems 16 for Enterobacteriaceae and staphylococci and automated PCR-based diagnostic test for the detection of MRSA 17.
This protocol has been developed and validated following the research and development processes and ethical rules of our institution before being implemented as a routine tool.
1. Preparation of a Blood Culture Bacterial Pellet by Ammonium Chloride Erythrocyte-lysing Procedure
2. Identification by MALDI-TOF MS
3. Bacterial Identification and Antibiotic Susceptibility Testing with an Automated Microbial System
4. Antibiotic Susceptibility Testing by Disk Diffusion Assay
The disk diffusion assay is described by the European committee on antimicrobial susceptibility testing (EUCAST, Version 3.0, April 2013, www.eucast.org).
5. Automated PCR-based Diagnostic Test for the Detection of MRSA
In the study performed by Prod’hom et al.15, bacterial pellets obtained by ammonium chloride lysis centrifugation of 122 positive blood culture from 78 patients were analyzed by MALDI-TOF MS. Out of 122 positive blood culture, 95 (77.9%) were correctly identified at the species level and one (0.8%) at the genus level. The remaining 26 (21.3%) blood culture pellets gave no reliable identification by MALDI-TOF. Among those, 21 were gram positive bacteria including 13 streptococci and 5 coagulase-n...
Compared to conventional positive blood culture diagnostic approaches, the rapid acquisition of a bacterial pellet by using the ammonium chloride lysis centrifugation approach reduce the time to report identification by 16 to 24 hr and the time to report AST by 24 to 48 hr (Figures 1 and 3).
Rapid introduction of appropriate antibiotic therapy is pivotal to improve the outcome of patients suffering from bloodstream infections. Thus, early identification of the infectious agent...
The authors declare that they have no competing financial interests.
We thank the technicians of the bacteriology laboratory of the University Hospital Center of Lausanne for their help to implement the techniques in the laboratory.
Name | Company | Catalog Number | Comments |
20 needle gauge | Terumo, Leuven, Belgium | NN-2038R | |
50 ml Falcon tube | BD, Franklin Lakes, NJ, USA | 352070 | 50 ml centrifuge tubes |
Ammonium chlorure | Merck, Darmstadt, Germany | 101145 | |
Potassium hydrogen carbonate | Fluka, St. Louis, MO, USA | 60340 | |
Formic acid | Sigma-Aldrich, St. Louis, MO, USA | F0507 | Flammable, corrosive |
a-Cyano-4-hydroxycinnamic acid | Fluka, St. Louis, MO, USA | 70990 | Acute toxicity |
Acetonitrile | Sigma-Aldrich, St. Louis, MO, USA | 271004 | Flammable, acute toxicity |
Trifluoroacetic acid | Sigma-Aldrich, St. Louis, MO, USA | T6508 | Corrosive, acute toxicity |
Vitek 2 60 instrument | Biomérieux, Marcy-l'Etoile, France | 27202 | automated microbial system instrument |
Vitek 2 Gram-positive (GP) card | Biomérieux, Marcy-l'Etoile, France | 21342 | automated GP identification card |
Vitek 2 AST-P580 card | Biomérieux, Marcy-l'Etoile, France | 22233 | automated microbial AST system |
Vitek 2 Gram-negative (GN) card | Biomérieux, Marcy-l'Etoile, France | 21341 | automated GN identification card |
Vitek 2 AST-N242 card | Biomérieux, Marcy-l'Etoile, France | 413391 | automated microbial AST system |
Xpert MRSA | Cepheid, Sunnyvale, Ca, USA | GXMRSA-100N-10 | nucleic acid amplification technology MRSA |
GeneXpert IV instrument | Cepheid, Sunnyvale, Ca, USA | GXIV-4-D | nucleic acid amplification technology instrument |
Microflex LT MALDI-TOF MS instrument | Bruker Daltonics, Bremen, Germany | BDAL microflex LT/SH | |
MSP 96 target steel BC | Bruker Daltonics, Bremen, Germany | 280799 | MALDI target plate |
Densitometer Densicheck instrument | Biomérieux, Marcy-l'Etoile, France | 27208 | |
MALDI Sepsityper kit 50 | Bruker Daltonics, Bremen, Germany | 8270170 | |
Mac Conkey agar | Biolife, Milano, Italy | 4016702 | |
Mueller-Hinton agar | Oxoid, Hampshire, England | CM0337 | Mueller-Hinton agar (MH) |
MHF agar | Biomérieux, Marcy-l'Etoile, France | 43901 | Mueller-Hinton agar-fastidious organisms agar (MHF) |
BD columbia III agar | BD, Franklin Lakes, NJ, USA | 254071 | blood agar |
BD chocolate agar | BD, Franklin Lakes, NJ, USA | 254089 | chocolate agar |
BD schaedler agar | BD, Franklin Lakes, NJ, USA | 254084 | Schaedler agar |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone